

Chapter 3. Structure of Enzymes

Enzyme Engineering

3.1 Introduction

With purified protein,

- Determining $M_{\rm r}$ of the protein
- Determining composition of amino acids and the <u>primary structure</u>
- Determining the secondary and tertiary structure
- Determining the quaternary structure
- → Bioinformatics (Protein Data Bank) tools

3.2. Determining M_r of the protein

- $M_{\rm r} \sim 10,000$ to several millions
- Methods to determine M_r
 - 1. Ultracentrifugation
 - 2. Gel filteration
 - 3. SDS PAGE
 - 4. Mass Spectrometry
- Method 2 and 3 provide relative mass
- Absolute Mass with method 1
- Method 4 is a new methodology and extremely fast and accurate

3.2.1 Ultracentrifugation

Ultracentrifuge Sedimentation (at very high speed)

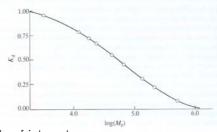
$$M_r = \frac{RTs}{D(1 - v\rho)}$$

R: gas constant, T: temp., s: sedimentation coefficient, D: diffusivity, ρ : density, $\overline{\nu}$: partial specific volume of a solute

Ultracentrifuge Equilibrium

$$M_r = \frac{2RT}{(1 - v\rho)w^2} \frac{d \ln c}{dr^2}$$

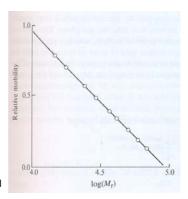
r : distance along the cell, ω : angular velocity, c : concentration


Useful technique to study cofactors, ligands, etc.

3.2.2 Gel filtration

Distribution coefficient of proteins in cross-linked polymer is correlated with their M_r 's

$$K_d = \frac{V_e - V_o}{V_i - V_o}$$



- V_e : elution volume of the molecule of interest
- V_i : elution volume of small molecule
- V_o : elution volume of excluded molecule

3.2.3 Electrophoresis

- SDS (Sodium dodecylsulphate)
 - Making the proteins have constant charge
 - Denaturing the proteins, so they have the same shape
 - SDS dissociate the subunits of the protein

3.2.4 Mass Spectrometer

- Conventional ionization method could be used for the protein with 500 or less amino acids
- Soft ionization methods have been developed
 - MALDI (Matrix-assisted laser desorption ionization)
 - Good for large proteins
 - Protein dissolved in small volume of organic acids as matrix → UV laser → stream of protein ions → Analyzed by time of flight (TOF)
 - ESI (electrospray ionization)
 - Extremely accurate (Good for studying posttranslational modification)
 - Protein in organic solvent is passed through a needle with high electron charge → Solvent evaporated and protein with charge is vaporized → Mass is analyzed by quadrupole mass analyzer
 - MS/MS: fast sequencing of protein

3.3 Amino acids composition and primary structure

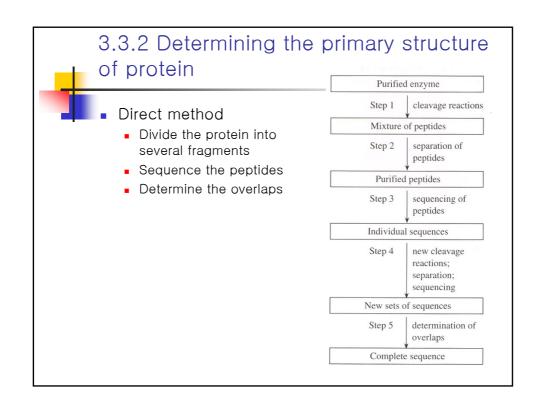
Amino Acids

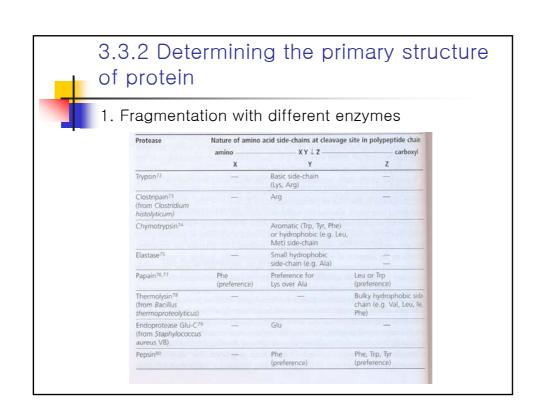
- 20 amino acids
- Zwitterion: *NH₃-CHR-CO₂- is natural form at pH 7
- Chiral compounds except glycine; only L-form is used
- Amide (peptide) bond can be formed between NH₃⁺ and CO₂⁻; polypeptide or protein can be made
- For convenience N-terminal is numbered first
- Cysteine residue can form covalent bond (Cystine): important for extracellular proteins

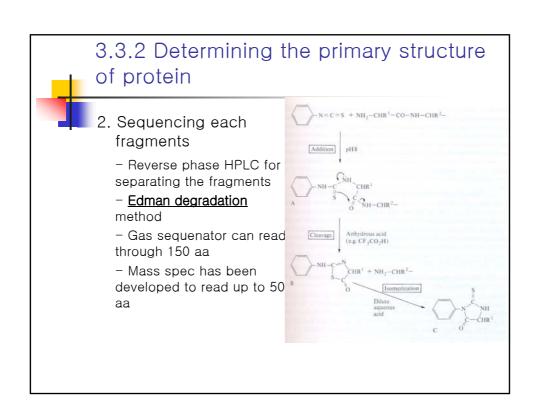
3.0

3.3.1 Amino acids composition

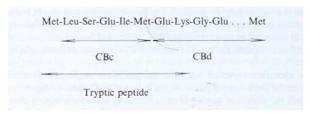
- Amino acids composition
 - Hydrolyze the amide bonds: 6 mol dm⁻³ HCl or ptoluene sulfphonic acid at 110°C
 - Separate 20 amino acids with pH gradient ion exchange chromatography
 - Measure the quantity of amino acids with ninhydrin or phthalaldehyde reaction


$$2 \longrightarrow OH \\ OH \\ OH \\ +R-CH \\ CO_2H \\ CO_2H \\ Ruhemann's purple$$




3.3.1 Amino acids composition

- Why amino acid composition?
 - 1. Compare with protein sequence
 - 2. Estimate the function or property of proteins
 - 3. Calculate the molecular weight
 - Evaluate the concentration of a purified protein



3.3.2 Determining the primary structure of protein

3. Aligning the sequences

The importance of protein sequence

- 1. It may tell us the function of the protein
- 2. It provides the evolutionary relationship between organisms

- 3.4.1 X-ray crystallography
 - Crystals of enzyme: Ammonium sulfate or other salts are used.
 - Isomorphous heavy metal derivatives: Crystal is soaked to heavy metal solution. (ex. Reaction of cysteine with mercurial compound) Used for calculating phase
 - Computing facilities: Electron density is calculated based on positions, intensities, and phase of the protein
 - Primary structure

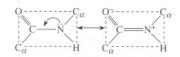
3.4 Determining secondary and tertiary structure

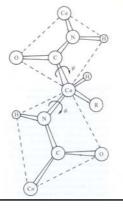
3.4.2 Structure in solution

- Proteins are flexible in solution
- NMR calculates the average distance between hydrogen atoms or between hydrogen and ¹³C, ¹⁵N
- High concentration of protein required
- Importance of flexibility study
 - To understand the induced fit mechanism
 - To find the rate-limiting step in the reaction
 - To understand the thermophilic and mesophilic enzymes
 - : The activity of thermophilic enzyme is no greater than mesophilic enzymes

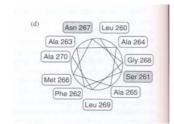
3.4 Determining secondary and tertiary structure

3.4.3 Importance of 3-D structure


- To test mathematical models aiming the prediction of structure without experiment
- To propose catalytic mechanism
- To explore similarities between enzymes
 - Enzymes with similar function may have similar structure
- To assist rational drug design

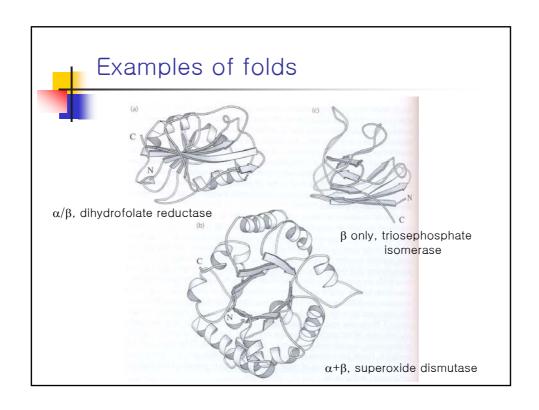


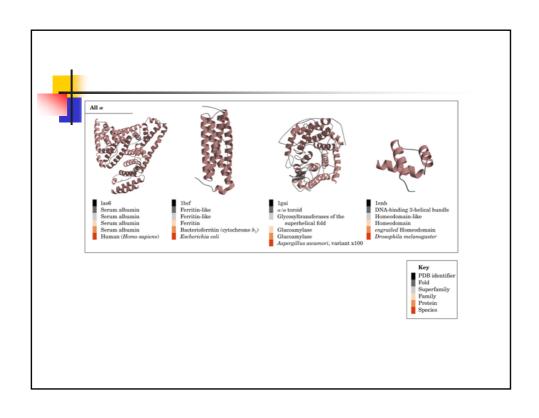
3.4.4 Features of secondary structure

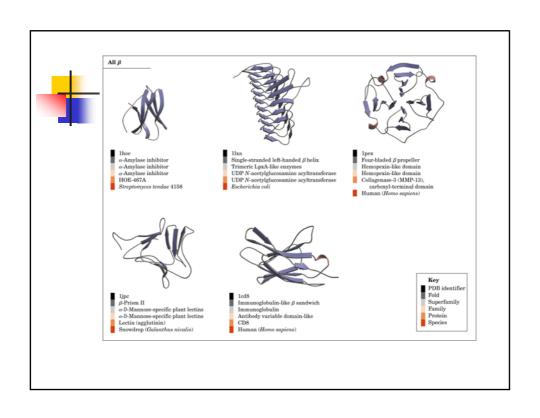

- Peptide bond
 - Partially double bond not rotating
 - Trans form is more stable than cis except proline
 - The bonds with α -carbon are rotating (ψ, ϕ)

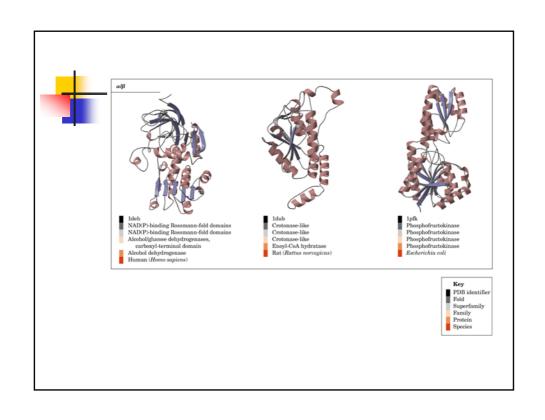
- α-helix
 - Stabilized by hydrogen bond between carbonyl groups of n and n+3 amide bonds
 - Proline is helix breaker
 - 3.6 amino acids, 13 atoms per turn, which is one in $100^{\circ} \rightarrow 3.6_{13}$ helix
 - 3₁₀ helix is also found
 - Helical wheel

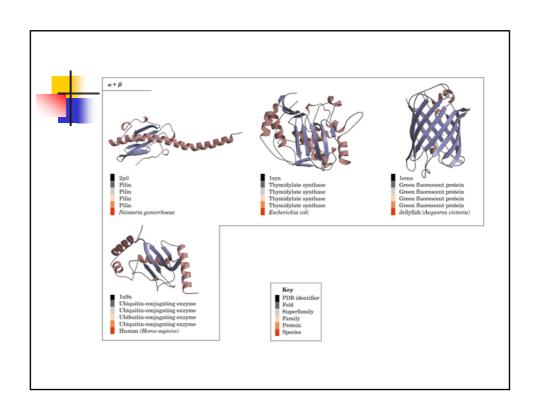
3.4 Determining secondary and tertiary structure

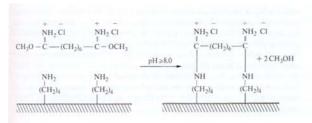


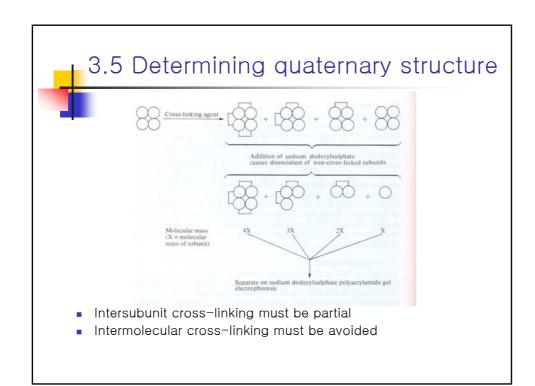

- β−sheet
 - Hydrogen bond between carbonyl groups between chains stabilizes the structure
 - Slightly twisted to right hand rather than flat
- β-turn
 - 180° turn, which make proteins globular
 - 2 to 5 amino acids turn is most common

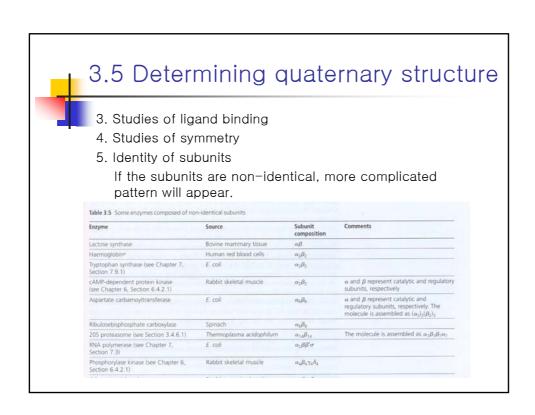



- General rules for enzyme structure
 - Very closely packed globular structure
 - Nonpolar amino acids are located in the interior of the enzyme, while polar ones are in the exterior
 - Polar groups in the interior have special functions and are paired by hydrogen bonds
 - Large enzymes consist of multiple domains (ex) phosphoglycerate kinase has two domains, one for substrate binding, the other for interaction with other proteins, while Factor IX has four
 - Large enzymes may consist of multiple subunits


- Classification of enzyme structure
- 1. All α proteins: myoglobin and citrate synthase
- 2. All β proteins: chymotrypsin and immunoglobulins
- 3. α/β proteins: triosephosephate isomerase and etc.
- 4. $\alpha+\beta$ proteins: The class is rather small, and sometimes regarded as sub-class of α/β (SCOP)
- → computer-based arrangement of secondary structure elements: fold
 - There may be less than 1000 folds existed
 - Most fold family contains functionally related proteins

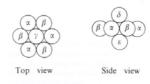



- 3.4.5 Forces stabilize the structure of enzyme
- Hydrogen bonds; especially important for α -helix and β -sheet structure (0.28-0.3 nm)
- Electrostatic forces; -NH₃+ (Lys) and -COO- (Asp), also known as salt bridge
- Van der Waals focrces; molecules in close contact with one another (less than 0.4 nm)
- Hydrophobic forces; greatest contribution in energy for structure stabilization, but no specificity



Many enzymes are oligomers \rightarrow quaternary structure

- 3.5.1 Number and type of subunits
- 1. Studies of $M_{\rm r}$ with/without denaturing agent, such as guanidinium chloride
 - Proteases must be absent
- 2. Cross-linking studies with dimethylsuberimidate



3.5 Determining quaternary structure

3.5.2 Arrangement of subunits

- Determined by structural studies
- Usually arranged to maximize the interactions between subunits

3.5.3 Forces between subunits

- Nonpolar interaction dominant
- If protein has more than 30% nonpolar aa, it likely form an oligomer

3.5 Determining quaternary structure

3.6.4 Why multiple subunits?

- 1. To regulate catalytic activity
- 2. To get variation in the catalytic activity
- 3. To increase the stability of enzyme
- 4. To get a large geometry, which is necessary for activity

- Unfolding of enzymes
 - The folded form is thermodynamically stable condition by a small margin
 - Easily unfolded = denatured
 - Heat; Increasing vibration or rotation
 - pH; Affecting ionization state
 - Organic solvent or detergent; Breaking nonpolar interaction
 - Guanidinium chloride or urea; Breaking non-polar interaction while maintaining Hbond

3.6 Folding and unfolding of enzymes

- Folding of enzymes
 - Folding achieved in vitro from unfolded peptide → Refolding
 - Several intermediates found
 - In vivo, chaperones (chaperonines) help correct folding
 - Disulfide isomerase and peptidyl prolyl isomerase are also important for