

The control of enzyme activity

Enzyme Engineering

Two ways to control enzyme activity

- Controlling concentration of enzyme : Regulation of transcription and translation → Long-term
- 2. Controlling activities of enzyme → Rapid responses
- 6.2 Control of the activities of single enzymes
 - By covalent bonds
 - 2. By reversible binding of 'regulator'
 - 3. Inhibitor, [S], product inhibition, etc...

6.2 Control of the activities

- . Control by covalent bond
 - Irreversible, mostly intracellular regulation
 - Example: phosphorylation, ubiquitination, ...
- 1.1 Irreversible changes in covalent bond (Proteolysis)

Table 6.1 Some enzymes activated by proteolytic action (mostly for extracellular regulation)

Enzyme	Precursor	Function
Trypsin Chymotrypsin Elastase Carboxypeptidase	Trypsinogen Chymotrypsinogen Proelastase Procarboxypeptidase	Pancreatic secretion (see Section 6.2.1.1)
Phospholipase A ₂ ⁷	Prophospholipase A ₂	Pancreatic secretion
Pepsin	Pepsinogen	Secreted into gastric juice: most active in pH range 1–5
Thrombin	Prothrombin	Part of the blood coagulation system (see Section 6.2.1.1)
Clř	Clr	Part of the first component of the complement system (see Section 6.2.1.1)
Chitin synthase ⁸	Zymogen	Involved in the formation of the septum during budding and cell division in yeast

6.2.1.1 Control by irreversible changes in covalent bond

Signal amplification mechanism of proteolysis

2) Blood coagulation Fibrinogen prothrombin → thrombin → Fibrin

6.2.1.2 Control by reversible changes in covalent bond

- Phosphorylation-dephosphorylation
- Adenylation or ADP-ribosylation also regulate enzyme activity
- Methylation, acetylation, tyrosinolation, etc...
 do not regulate activity
- 1. Phosphorylation
- Kinase: phosphorylation of other protein
- Protein phosphatase : dephosphorylation
- Human has 2000 kinase and 1000 protein phosphatase
- Phosphorylation occurs on serine/threonine, tyrosine using ATP(GTP) as a substrate

Enzyme or protein	Modification	Biological function						
Glycogen phosphorylase	Phosphorylation)							
Glycogen synthase	Phosphorylation	76. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.						
Phosphorylase kinase	Phosphorylation	Glycogen metabolism (see Section 6.4.2)						
Phosphatase inhibitor protein	Phosphorylation J							
Fructose 2,6-bisphosphatase/6-phosphofructo-2-kinase	Phosphorylation	Regulation of glycolysis (see Section 6.4.1.1)						
Pyruvate dehydrogenase complex (mammalian)	Phosphorylation	Entry of pyruvate into tricarboxylic-acid cycle (see chapter 7, Section 7.7.5)						
Branched chain 2-oxoacid dehydrogenase complex	Phosphorylation	Breakdown of leucine, isoleucine, and valine						
Acetyl-CoA carboxylase	Phosphorylation	Synthesis of fatty acids						
Troponin-1	Phosphorylation	Muscular contraction						
Myosin light chain	Phosphorylation							
cdc kinase	Phosphorylation	Regulation of mitosis ¹⁵ (see Chapter 9, Section 9.7.4)						
Glutamine synthetase (E. coli)	Adenylylation	Glutamine acts as N donor in a wide range of biosynthetic						
Glutamine synthetase (mammalian)	ADP-ribosylation	reactions						
RNA polymerase (E. coli)	ADP-ribosylation	On infection by T4 phage, an Arg side chain in the α subuni becomes modified. This shuts off transcription of the host genes						
G-protein	ADP-ribosylation	G-proteins can act as transducing agents relaying the effect of hormone binding to the activation of adenylate cyclase (see Chapter 8, Section 8.4.5)						
Nitrogenase	ADP-ribosylation	Regulation in response to ammonia in nitrogen-fixing bacteria ¹⁶						
Fructose 2,6-bisphosphatase/6-phosphofructo-2-kinase	ADP-ribosylation	Possible regulation of glycolysis ¹⁷ (see Section 6.4.1.2)						

6.2.1.2 Control by reversible changes in covalent bond

 Ser/Thr phosphorylation involves in metabolic control, while Tyr phosphrylation in cell growth/differentiation

Enzyme family	Amino-acid acceptor	Regulator	Processes regulated					
cAMP-dependent PK (cAPK)	Ser/Thr	cAMP	glycolysis, gluconeogenesis, triglyceride and cholestrol metabolism, catecholamine metabolism					
cGMP-dependent PK (cGPK)	Ser/Thr	cGMP	similar to cAPK but restricted distribution, e.g. smooth muscle					
protein kinase C	Ser/Thr	diacylglycerol Ca ²⁺	exact role unknown, control of intracellular [Ca2+], phosphorylation of EGF receptor					
Ca ² */calmodulin PK	Ser/Thr	Ca2+	phosphodiesterase, Ca²+/Mg²+ ATPase, myosin LC kinase, phosphorylase kinase					
Cyclin-dependent kinase	Ser/Thr	cyclins	cell cycle regulation by phosphorylation of lamins, vimentin, histone H1, and other					
Mitogen activated protein kinases (MAP kinases)	Ser/Thr	growth factors cytokines, pheromones	translocation to nucleus to activate transcriptional factors					
Receptor tyrosine kinases	Tyr	growth factors	activation of enzymes including phosphatidylinositol 3-kinase, GTPase activation protein, MAP kinases					
Cytosolic tyrosine kinases	Tyr	cytokines	transcriptional activation					

6.2.1.2 Control by reversible changes in covalent bond

- Adenylylation on Tyr of glutamine synthase → Reducing enzyme activity
- Nitrogenase from nitrogen-fixing bacteria is regulated by ADP-ribosylation on Arg → Reducing enzyme activity

Features

- 1. Rapid response and signal amplification
- Continuous response
 Ser/thr phos → in balance
 Tyr phos → shift to dephosphorylation, meaning the transient response

Nicotinamide adenine dinucleotide (NAD+)

- h: cooperativity
- *h* is generally smaller than *n*
- h can be obtained by experiment

$$\frac{Y}{1-Y} = \frac{[A]^h}{K}$$

$$\log(\frac{Y}{1-Y}) = h\log[A] - \log K$$

6.2.2.2 Kinetics of Ligand binding

- Monod, Wyman, and Changeux (MWC) model
- At lease one axis of symmetry
- 2. The conformation of each subunit is affected by others
- 3. Two conformation states, R and T
- Either in R or T state, the symmetry is conserved – no 'hybrid' state

- Two parameters are defined
- a; conc. Free ligand, $c=K_R/K_T$, $L=[T_0]/[R_0]$

$$\begin{split} [R_{\scriptscriptstyle 1}] &= \frac{4[F]}{K_R}[R_{\scriptscriptstyle O}] = 4\alpha[R_{\scriptscriptstyle O}] \qquad [T_{\scriptscriptstyle 1}] = \frac{4c[F]}{K_R}L[R_{\scriptscriptstyle O}] = 4\alpha c L[R_{\scriptscriptstyle O}] \\ [R_{\scriptscriptstyle 2}] &= \frac{6[F]^2}{K_R^2}[R_{\scriptscriptstyle O}] = 6\alpha^2[R_{\scriptscriptstyle O}] \qquad [T_{\scriptscriptstyle 2}] = \frac{6c^2[F]^2}{K_R^2}L[R_{\scriptscriptstyle O}] = 6\alpha^2c^2L[R_{\scriptscriptstyle O}] \end{split}$$

(a) the fraction of protein in the R state ($\bar{R} = function \ of \ state \ R$):

$$\bar{R} = \frac{[R_o] + [R_1] + [R_2] + [R_3] \cdots + [R_n]}{([R_o] + [R_1] + [R_2] + [R_3] \cdots + [R_n]) + ([T_o] + [T_1] + [T_2] + [T_3] \cdots + [T_n])}$$

$$(13.31)$$

(b) the fraction of sites actually bound by the ligand ($Y_F = saturation function$):

$$Y_{F} = \frac{([R_{1}] + 2[R_{2}] + 3[R_{3}] \cdots + n[R_{n}]) + ([T_{1}] + 2[T_{2}] + 3[T_{3}] \cdots + n[T_{n}])}{n([R_{0}] + [R_{1}] + [R_{2}] + [R_{3}] \cdots + [R_{n}]) + n([T_{0}] + [T_{1}] + [T_{2}] + [T_{3}] \cdots + [T_{n}])}$$
(13.32)

6.2.2.2 Kinetics of Ligand binding

$$\overline{Y} = \frac{Lc\alpha(1+c\alpha)^{n-1} + \alpha(1+\alpha)^{n-1}}{L(1+c\alpha)^n + (1+\alpha)^n},$$
(6.7)

$$\overline{R} = \frac{(1+\alpha)^n}{L(1+\alpha)^n + (1+\alpha)^n}.$$
(6.8)

- L and c can be obtained experimentally (in hemoglobin, L=9050, c=0.014)
- K system and V system
- a) No Substrate, no Effector
- b) Adding substrate
- c) Adding effector

- Koshland, Nemethy, and Filmer (KNF) model
 - "Induced-fit" hypothesis

$$\bigcirc + A \Longrightarrow \bigcirc A$$

$$\bigcirc A + A \Longrightarrow A A$$

- 1. Without substrate, the protein exist in one state
- 2. The conformational change is sequential
- 3. The intxns b/n subunits can be positive/negative

 The significance of the cooperativity in enzyme kinetics: small changes in [S] induce large changes in v

$v = \frac{V_{\text{max}}[S]^h}{K_{\text{m}} + [S]^h}$							
Value of h in eqn (6.9)	Required change in [S] to increase velocity from 10 per cent of $V_{\rm max}$ to 90 per cent of $V_{\rm max}$						
news all their polinon amplitudes	81-fold						
2 manufacture 2	9-fold						
3	4.33-fold						
4	3-fold						
0.5	6561-fold						

6.3 Control of metabolic pathways

- Intrinsic control vs extrinsic control
- Intrinsic control: Control of metabolic activity by metabolite concentrations (Unicellular organism)
- Extrinsic control: Control of metabolic activity by extracellular signals, such as hormones or nervous stimulation (Multicellular organism)
 - Secondary signaling molecules: cyclic AMP, Ca²⁺, inositol 1,4,5-triphosphate, and diacylglycerol

6.3 Control of metabolic pathways | Signal | Si

6.3 Control of metabolic pathways

Control of glucose/glycogen metabolism in liver

- Other examples include PEP/pyruvate interconversion, fatty acid/triglycerol in adipose tissue, etc...
- Sometimes working as futile cycle

6.3 Control of metabolic pathways

- 2. Interconvertible enzyme cycle
- Control of enzyme activities by covalent modification
- 0.5% changes of modifier can regulate enzyme activity from 10 to 90%
- High ratios of [NADH]/[NAD+] and [acetylCoA]/[CoA] activate kinase and inactivates protein phosphatase

6.3 Control of metabolic pathways

- 3. Theoretical approach to analyze the metabolic pathways
- Metabolic flux analysis
- 2. Metabolic control analysis

Metabolic Flux Analysis

$$V_1 \longrightarrow X_1 \longrightarrow V_2 \longrightarrow X_2 \longrightarrow V_3 \longrightarrow V_4$$

$$\frac{dX_1}{dt} = v_1 - v_2 \qquad \frac{dX_2 \to X_3}{dt} = S \cdot v$$

Example 1
$$v_1$$
 X_1 v_2 X_2 v_3 X_3 v_4

$$\frac{dX_1}{dt} = v_1 - v_2$$

$$\frac{dX_2}{dt} = v_2 - 2v_3$$

$$\frac{dX_3}{dt} = v_3 - v_4$$

$$X_1 \quad v_2 \quad X_2 \quad v_3 \quad X_3 \quad v_4$$

$$V_1 \quad V_2 \quad V_3 \quad V_4$$

$$S = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} X_1$$

$$X_2 \quad X_3 \quad V_4$$

$$\frac{dX_3}{dt} = v_3 - v_4 \qquad S = \begin{bmatrix} 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} X_3$$

Quasi Steady State Assumption

$$\frac{dX}{dt} = S \cdot v = 0$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 & 0 & -1 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = 0$$

$$\begin{bmatrix} -1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & -2 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = 0$$
Type I Operation

$$\begin{bmatrix} -1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & -2 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_1 \\ v_6 \end{bmatrix} = 0 \qquad \begin{bmatrix} S_u & S_m \end{bmatrix} \begin{bmatrix} V_u \\ V_m \end{bmatrix} = 0$$

$$S_u V_u + S_m V_m = 0$$

$$S_u V_u = -S_m V_m$$

$$V_u = -S_u^{-1} S_m V_m$$

	$J_{\rm glc}$	J_{pgi}	J_3	J _{pep}	J_{pyk}	J_{pdh}	Jace	J_8	J _{ict}	J ₁₁	J ₁₂	J _{ppc}	J ₁₄	J ₁₅	J ₁₆	J _{tkt}	J_{tal}	J _{resp}	J _{atp}	O _{cp2}	Oace	J _{biomass}	
G6P	1	-1	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	-205	
F6P	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-70.9	
GAP	0	0	2	-1	0	0	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	-1625	
EP	-1	0	0	1	-1	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	-519.1	
vR	1	0	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-2832.8	
сСоА	0	0	0	0	0	1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	-4028.8	
)AA	0	0	0	0	0	0	0	-1	0	0	1	1	0	0	0	0	0	0	0	0	0	-1786.7	
CT	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	
G.	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	-1078.9	
UC	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	
tu5P	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	-1	0	0	0	0	0	0	0	
R5P	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-1	0	0	0	0	0	-897.7	
(5P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	0	
57P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	
AP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-361	
NAD(H)P	0	0	0	1	0	1	0	0	1	1	1	0	2	0	0	0	0	-1	0	0	0	-14678	
ATP	0	0	-1	1	1	0	1	0	0	1	1	0	0	0	0	0	0	2	-1	0	0	-18485	
002	0	0	0	0	0	1	0	0	1	1	0	-1	1	0	0	0	0	0	0	-1	0	1793	
cetate	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	387	

$$V_{u} = S_{u}^{-1} S_{m} V_{m}$$

$$\begin{bmatrix} J_{pgl} \\ J_{3} \\ J_{pep} \\ J_{pyr} \\ J_{edh} \\ J_{ace} \\ J_{11} \\ J_{12} \\ J_{pgc} \\ J_{14} \\ J_{15} \\ J_{16} \\ J_{17} \\ J_{18} \\ J_{18}$$

$$V_{u} = S_{u}^{-1} S_{m} V_{m}$$

$$\begin{bmatrix} J_{pgi} \\ J_{3} \\ J_{pep} \\ J_{pyr} \\ J_{pdh} \\ J_{ace} \\ J_{11} \\ J_{12} \\ J_{12} \\ J_{13} \\ J_{14} \\ J_{15} \\ J_{16} \\ J_{0.0299} \\ J_{alp} \\ J_{alp} \\ J_{arp} \\ J_{42} \\ J_{2029} \\ J_{alp} \\ J_{232} \\ J_{alp} \\ J_{232} \\ J_{232} \\ J_{242} \\ J_{202} \\ J_{232} \\ J_{242} \\ J_{202} \\ J_{232} \\ J_{242} \\ J_{202} \\ J_{2024} \\ J_{200000829} \end{bmatrix}$$

Metabolic Flux Analysis I

- Mass Balance Equations
- Quasi Steady State Approximation
- Removing the Linearly Dependent Reactions
- Measure the Fluxes as many as Degree of Freedom

Metabolic Flux Analysis II

- Mass Balance Equations
- Quasi Steady State Approximation
- Removing the Linearly Dependent Reactions
- More Constraints
- Measure the Fluxes as many as
 Degree of Freedom
- Optimal Solution

$$\frac{dX}{dt} = S \cdot v = 0$$

$$0 \le v_i \le v_{i,\text{max}}$$

$$0 \le v_j \le v_{j,\text{max}}$$

$$0 \le v_k \le v_{k,\text{max}}$$

$$\vdots$$

$$\vdots$$

$$\mathbf{J}_{\text{biomass}} \longrightarrow \mathbf{Maximum}$$

Summary: Metabolic Flux Analysis

- Metabolic Flux Distribution
- Maximum Yield
- Predicting Growth Rates (wild type and mutant)
- Relying on Biochemical Knowledge
- No Kinetics and Regulatory Information

Metabolic Control Analysis

$$e_1 \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_4$$

Flux control coefficient

$$C_i^{J_k} = \frac{E_i}{J_k} \frac{dJ_k}{dE_i} = \frac{d \ln J_k}{d \ln E_i}$$

Elasticity coefficient

$$E_i^{v_k} = \frac{dv_k}{dS_i}$$

Theorems

$$\sum C_n^J = 1$$

$$\sum C_i^J E_S^i = 0$$

Metabolic Control Analysis

- Rate limiting enzyme
- How the activity change in one enzyme can affect on the overall pathway
- Hard to estimate parameters