Chapter 1. Introduction to Nanoparticle Technology

"Nanoparticles – the small particles with a big future."

1.1 Definitions

Definition by size

Particles having sizes less than 0.1µm (100nm)
1st generation nanoparticles: <100nm
2nd generation nanoparticles: <10nm
Lower limit of nanoparticles: ~1nm
*Other names of nanoparticles
ultrafine particles, clusters, nanocrystals, quantum dots

cf. colloids, aerosols, hydrosols, organosols..

Size Ranges of Particle

- Coarse particles : >10µm
- Fine particles : $\sim l \ \mu m$
- Ultrafine (nano) particles : <0.1 (100nm)

Buckminster fullerene Football

Planet earth

if a buckyball (60 carbon atoms arranged into a sphere with a diameter of approximately 1nm) were expanded to the size of a football, the football would correspondingly be expanded so that it was much bigger than the size of Earth (becoming approximately the size of Neptune or Uranus – about 50,000km in diameter).

Definition by properties

: whose properties becomes discontinuous as the bulk contracts

- less than the characteristic length* of some phenomena

cf. Mean free path of gases, wavelength of light, electron wave,

distance between electro-hole pair (exciton)

Characteristics of nanoparticles

-Difficult to produce by breakdown process:

-Formation by growth (buildup or bottoms-up)

-Small size effect (quantum size effect)

-Contain very small number of atoms(or molecules): size effect

-Electronic states quite different from those of bulk: size effect

-Large surface effect

- Contain large portion of surface atoms(or molecules) : High surface activity

1.2 Field of Nanoparticle Technology

(1) Design and preparation of nanoparticles with high functionality What?

Size, shape, chemical properties, crystallinity, structures if composites *How*?

Bottom-up: nucleation and growth in liquid phase and/or gas phase Top-down: ultrafine milling

Mixed: spray pyrolysis in aerosol phase

(2) Characterization of nanoparticles

Size and morphology(shape): TEM, SEM, STM, LPA, DMA Chemical/crystalline properties: FT-IR, NMR, ACP-IES, XRD Surface properties: BET, XPS, Auger, AFM Composite structures: TEM, element mapping

- (2) Dynamics of nanoparticles
 - Movement of nanoparticles
 - Formation and growth of nanoparticles
- (4) Handling(Unit Operation) of Nanoparticles
 - Storage, transport, crushing and mixing*
 - Separation
- (5) Dispersion, Consolidation and Device(Value Addition) Technology
 - Particle-particle interaction
 - Surface modifications
 - Assembly: 1-, 2-dimensional, porous, densification
 - Device for application
- (6) Adverse Effect of Nanoparticles
 - Dust explosions
 - Respiration hazards/Effect in human bodies
 - Particle contamination and cleaning in industries

1.3 History of Nanoparticle Research

*4c, Roman glassmakers, glasses containing nanosized metal particles

- Lycurgus cup

- Explained by Michael Faraday(1857) and Gustav Mie(1908)..

*18-19c, H.Davy, C.Maxwell(1861), G.Eastman(1883),

Photographic films using silver

halide photochemistry(silver nanoparticles)

In diffused light In focused light

1905, A.Einstein "the existence of colloid(Big atoms)", discovered Brownian motion.

*1958, Richard Feynman, a lecture entitled "There are plenty of room at the bottom." http://qubit.plh.af.mil/RelatedArticles/related/Feynman59.pdf - predicted the existence of electron beam lithography, scanning tunneling microscope and building circuits on the scale of nanometer for powerful computers *1960s~1970s, preparation of nanoparticles by gas evaporation-condensation method

Quantum confinement (Kubo) effect

* 1981-1986 Japan, Ultra-Fine Particle Project under the auspices of the Exploratory Research for Advanced Technology program (ERATO)

- preparation, characterization, properties, applications *1981 G.K. Binnig H. Roher(IBM Zurich): invented scanning tunneling microscope (1985 Nobel prize)

- allows atomic-scale three-dimensional profiles of surfaces to be obtained

*1985 R.Smalley, R.Curl and H.Kroto discovered C_{60} (Nobel Prize in 1996).

-Officially known as buckminsterfullerene (exactly like a football).

*1987 B.J. van Wees and H. van Houten (Netherlands)/D. Wharam and M.Pepper (Cambridge U.), observed quantization of conductance (step in I-V curve)

- Coulomb blockade, single electron transistor

*1991, Yablonovitch, 3-D photonic crystals

*1991, Iijima made carbon nanotubes (multi-walled), Single-walled(1993) *1993, Murray, Norris and Bawendi synthesize the first high quality quantum dots of nearly monodisperse CdS CdSe and CdTe. they emit different colors depending on their size.

*1999, Self assembly of molecules on metal nanoparticles

*1996 NSF et al., assessed current worldwide status of nanoscience and nanotechnology

*2000.2 B. Clinton, National Nanotechnology Initiative

Followed by Japan, EU and other countries..

*2003, Prototype solar cells (Nanosolar Inc.) with conducting polymers and nanobased particles.

- much cheaper and easier to make.

- produced in flexible sheets, making them suitable for many applications

*2004, Silica nanoshells coated with gold (Rice University and the University of Texas)

- killed cancerous tumours, when exposed to an external source of nearinfrared light.

*2004, NanoScale Materials Inc., neutralizer for chemical hazards

- dry powder formulation (Reactive Nanoparticle (RNPTM)) to bind with a variety of chemical warfare agents and toxic chemicals, and chemically convert them to safer by-products

1.4 Applications and Perspective of Nanoparticles

Dispersed state

Fillers, paints, ferrofluids, magnetic recording media, drugs, cosmetics, phosphors, rocket propellant, fuel additives

Consolidated state

- Porous structure

Catalysts, electrodes of solar cells and fuel cells, sensors, adsorbents, synthetic bone, self-cleaning glass

- Ordered assembly

Quantum electronic device, photonic crystals, DNA chips, biosensors

- Dense phase

Flexible/dense ceramics and insulators, harder metal, CNT in tennis racquet

* Present and future application of nanoparticles

Biomedicals

- Pharmacy in a cell- controlled release
- Solubilized therapeutic drugs
- Tagging of DNA and DNA chips

Information Tech

- Information storage (nanoparticles, nanopens)
- Chemical/Optical computers(2-D,3-D assembly- photonic crystals)
- Quantum (molecular) electronic devices

<u>Materials</u>

- Flexible/dense ceramics and insulators: replacing metals
- Harder metal materials(5 times that of normal metals)
- Nanometallic colloids as film precursors

- Fillers for improved polymers (stronger, lighter, wear resistant, tougher lame retardant) replacements for body parts and metals
- Unusual coloring in paints
- Smart magnetic fluids (vacuum seals, viscous dampers, cooling fluids, nanoscale bearings, heat conductors, magnetic separations)

Energies

- Magnetic refrigeration (magnetocaloric effect)
- Nanostructured electrodes and magnetic metals with soft magnetic properties
- Better batteries- metal nanoparticles

Environmental/green chemistry

- solar cells (photovoltaic, water splitting)
- photo-remediation (pollutant destruction, water decontamination)
- Destructive adsorbents (acidic gases, polar organics)
- Self cleaning

<u>Catalysis</u>

- Chemical catalysts (particle size and dispersion, crystal faces, edges, corners, defects)
- Sensors (porous aggregates of semiconductor particles)

<u>R&D by US government for nanotechnology</u>

Estimated government sponsored R&D in \$ millions/year using NNI nanotechnology definition (without MEMS, other microstructures)						
Fiscal Year	1997	2001	2002	2003	2004R	
W. Europe	126	~ 225 (270)	~ 400	~ 650		
Japan	120	465	~ 720	~ 800		
USA	116	422 (465)	~ 600 (697)	770	849	
Others	70	~ 380	~ 550	~ 800		
Total	432 100%	1492 (1580) 365%	2250 (236 547)	and the second sec	849	

Others: Australia, Canada, China, E. Europe, FSU, Israel, Korea, Singapore, Taiwan Note: () Actual budget

Key areas of relevance in FY 2004 Request

(single counted, without cross-cutting, all in § million)

Materials	141
 Electronics 	179
total 320	
Energy	12
Environment	25
total 37	
Bio-medical	109
 Societal and Educational Implications 	19
total 138	

World market for nanotechnology

New technologies and products: ~ SI trillion / year by 2015

(With input from industry US, Japan, Europe 1997-2000, access to leading experts)

Materials beyond chemistry: \$340B/y = Pharmaceuticals: \$180 B/y Acrospace about \$70B/y

Electronics: over \$300B/y Chemicals (catalysts): \$100B/y Tools ~ \$22 B/y

Est. in 2000 (NSF) : about \$40B for catalysts, GMR, materials, etc. Est. in 2002 (DB) : about \$116B for materials, pharmaceuticals and chemicals

Would require worldwide ~ 2 million nanotech workers