Chapter 2. Size and Shapes of Nanoparticles

2.1 Size and Shape of Single Particles

(1) Particle shapes and size description

* Particle shapes

Spherical/cube/angular/cylindrical/acicular/chainlike/fibrous/dendrite etc.

* Primary particles

Secondary particles:

-Also called agglomerates or aggregates-Represented by fractal dimension

* Particle size

-Sphere: diameter

-Non-sphere: equivalent diameter

Equivalent diameters	Description	Formula	Remarks
Equivalent volume (sphere) diameter	the diameter of the hypothetical sphere having the same <u>volume</u> as the particle volume	$d_{p,v} = \left(\frac{6V}{\pi}\right)^{1/3}$	
Equivalent surface- volume diameter	the diameter of the hypothetical sphere having <u>the</u> <u>same surface-to-volume ratio</u> as the particle	$d_{p,sv} = \frac{6V}{S}$	
Stokes diameter	the diameter of the hypothetical sphere having the same <u>terminal settling velocity</u> and density as the particle		☞ Later
Aerodynamic diameter	the diameter of the hypothetical unit-density sphere having the same <u>terminal settling velocity</u> as the particle		☞ Later

"Which diameter we use depends on the end use of the information."

25 mm

(3) Size and shape of specific particles

* Fullerene- named after the architect, Buckminster Fuller, who designed "Geodesic dome"

C60- buckminsterfullerene

* Carbon nanotube

Single-walled CNT (a) armchair; (b)zigzag; (c)chiral structures

Multi-walled CNT

* Polymers

$$V = 0.001661 \frac{M_w}{\rho} \quad nm^3$$
$$\therefore d_v = 0.1469 \left(\frac{M_w}{\rho}\right)^{1/3} \quad nm$$

where M_{w} , ρ in cgs unit

* Biological substance

Class	Material	$M_{\rm w}$ (Da)	Size d (nm)
Amino acids	Glycine (smallest amino acid)	75	0.42
	Tryptophan (largest amino acid)	246	0.67
Nucleotides	Cytosine monophosphate (smallest DNA nucleotide)	309	0.81
	Guanine monophosphate (largest DNA nucleotide)	361	0.86
	Adenosine triphosphate (ATP, energy source)	499	0.95
Other molecules	Steric acid C17H35CO2H	284	0.87
	Chlorophyll, in plants	720	1.1
Proteins	Insulin, polypeptide hormone	6,000	2.2
	Hemoglobin, carries oxygen	68,000	7.0
	Albumin, in white of egg	69,000	9.0
	Elastin, cell-supporting material	72,000	5.0
	Fibrinogen, for blood clotting	400,000	50
	Lipoprotein, carrier of cholesterol (globular shape)	1,300,000	20
	Ribosome (where protein synthesis occurs)		30
	Glycogen granules of liver		150
Viruses	Influenza		60
	Tobacco mosaic, length		120
	Bacteriophage T2		140

Class	Material	Size d (µm)
Organelles (structures in cells outside nucleus)	Mitochondrion, where aerobic respiration produces ATP molecules	0.5 × 0.9 × 3
	Chloroplast, site of photosynthesis, length	4
	Lysosome (vesicle with enzymes for digesting macromolecules)	0.7
	Vacuole of amoeba	10
Cells	Escherichia coli (E. coli) bacterium, length	8
	Human blood platelet	3
	Leukocytes (white blood cells), globular shape	8-15
	Erythrocytes (red blood cells), disk shape	1.5 × 8
Miscellaneous	Human chromosome	9
	Fascicle in tendon	50-300

2.2 Particle size distribution functions

Size Range,nm,,d _{pi} ~d _{pi+1}	Count (Frequency)	Cumulative Fraction, F _{c,i}	Fraction,, F _{c,i+1} -F _{c,i}	$\frac{F_{c,i+1} - F_{c,i}}{d_{p,i+1} - d_{p,i}}$
0-4	104	0.104	0.104	0.026
4-6	160	0.264	0.160	0.080
6-8	161	0.425	0.161	0.0805
8-9	75	0.500	0.075	0.075
9–10	67	0.567	0.067	0.067
10-14	186	0.753	0.186	0.0465
14–16	61	0.814	0.061	0.0305
16–20	79	0.893	0.079	0.0197
20-35	103 ₂₀₀	0.996	0.103	0.0034
35–50	4 180	1.000	0.004	0.0001
> 50	<i>0</i> 160	1.000	0	0.0

40 20 0

10

Data on particle size measurement

20 30 40 Particle diameter, nm 50

(1) Size distribution function

* Count size distribution function

 $f_c(d_p)dd_p$: fraction of particle counts(numbers) with the diameters between d_p and $d_p + dd_p$

- Cumulative count size distribution

See the Table on p19 for details

* Mass size distribution function $f_m(d_p)$

$$\lim_{d_{p,i+1} \to d_{p,i}} \frac{F_{m,i+1} - F_{m,i}}{d_{p,i+1} - d_{p,i}} = \frac{dF_m}{dd_p} = f_m(d_p)$$

 $f_m(d_p)dd_p$: fraction of particle mass with the diameters between d_p and $d_p + dd_p$

$$f_m(d_p) = \frac{\frac{\pi}{6}\rho_p d_p^{\ 3} f_c(d_p)}{\int_0^\infty \frac{\pi}{6}\rho_p d_p^{\ 3} f_c(d_p) dd_p} = \frac{\frac{\pi}{6}d_p^{\ 3} f_c(d_p)}{\int_0^\infty \frac{\pi}{6}d_p^{\ 3} f_c(d_p) dd_p} \equiv f_v(d_p)$$

$$Volume \ size$$

$$distribution \ function$$

- also called third moment distribution

- Sample data gives mass size distribution as \rightarrow See the Table on p19 for details

cf. Second moment distribution function =surface distribution function

- Cumulative mass size distribution function

(2) Mass distribution functions

$$\lim_{d_{p,i+1} \to d_{p,i}} \frac{F_{M,i+1} - F_{M,i}}{m_{p,i+1} - m_{p,i}} = \frac{dF_M}{dm_p} = f_M(m)$$

 $f_M(m)dm$: mass fraction of particles having mass between m and m+dm

$$f_M(m)dm = f_M(m)d\left(\frac{\rho_p \pi d_p^{-3}}{6}\right) = f_M(m)\frac{\rho_p \pi d_p^{-2}}{2}dd_p$$

$$\therefore f_m(d_p) = f_M(m)\frac{\rho_p \pi d_p^{-2}}{2}$$

* surface area distribution functions

or others: distributions of charge, concentration, shape, price etc.

(3) Averages and Dispersion

<u>Average diameters</u>

The differences in averages come from skewed distribution with long tail.

* mass (average diameter)>surface (average diameter) >count (average diameter) Standard deviation

$$\sigma = \left(\int_{0}^{\infty} (\overline{d}_{p} - d_{p})^{2} f(d_{p}) dd_{p}\right)^{1/2}, \quad nm$$

(4) Diameter of average properties

Diameter of average mass

$$d_{p,\overline{m}} = \left(\frac{6}{\pi\rho_p}\frac{M}{N}\right)^{1/3} = \left(\frac{6}{\pi\rho_p}\frac{\sum m_i}{N}\right)^{1/3} = \left(\frac{6}{\pi\rho_p}\frac{\sum m_i}{N}\right)^{1/3} = \left(\frac{6}{\pi\rho_p}\frac{\sum m_i}{N}\right)^{1/3} = \left(\frac{1}{2}\left(\frac{1}{2}\right)^{1/3}\right)^{1/3} = \left(\frac{1}{2}\left(\frac$$

where M: total mass or total mass concentration

N: total number or total number concentration

* In general, for any property $Q \sim d_p^{q}$

Then diameter of average Q

$$d_{p,\overline{Q}} = \left(\frac{\sum_{N} d_{p}^{q}}{N}\right)^{1/q}$$

(5) Lognormal size distribution function

- Standard form of distribution

* Normal(Gaussian) distribution function

$$f_G(x)dx = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\bar{x}-x)^2}{2\sigma^2}\right)dx$$

where
$$\sigma = x_{50\%} - x_{16\%} = x_{84\%} - x_{50\%} = \frac{1}{2}(x_{84\%} - x_{16\%})$$

* Lognormal size distribution function

Replacing x with $\ln d_p$ and σ with $\ln \sigma_g$

$$f_{LN}(d_p)d(\ln d_p) = \frac{1}{\ln \sigma_g \sqrt{2\pi}} \exp\left(-\frac{(\ln d_p)^2}{2(\ln \sigma_g)^2}\right) d(\ln d_p)$$

where

 $\overline{\ln d_p} = \int_0^\infty (\ln d_p) f_{LN}(d_p) d(\ln d_p) = \ln d_{pg} \qquad d_{pg}: \text{ geometric mean diameter}$ $\overline{\ln \sigma_g} = \left(\int_0^\infty (\overline{\ln d_p} - \ln d_p)^2 f_{LN}(d_p) d(\ln d_p)\right)^{1/2} \sigma_g: \text{ geometric standard deviation}$

where
$$\sigma_g = \frac{x_{50\%}}{x_{16\%}} = \frac{x_{84\%}}{x_{50\%}} = \left(\frac{x_{84\%}}{x_{16\%}}\right)^{1/2}$$

- Sample data can be plotted on log scale abscissa \downarrow

See Table on p19 for details

95

99.5

99.999

40 70

10

1

0.01

1E-4

* Criterion for monodispersity: $\sigma_g = 1.2 \sim 1.4$.

* Relations of average diameters (Hatch-Choate equation)

- From CMD to other average diameter

 $d_A = CMD \exp(b\ln^2 \sigma_g)$

where $b \rightarrow$

From CMD to diameter of average
$$d_{\overline{q}} = CMD \exp\left(\frac{p}{2}\ln^2 \sigma_g\right)$$

where p=1 for length, 2 for surface, 3 for volume or mass

To convert from CMD to	For the
	value of b
Mode	-1
Count mean diameter	0.5
Diameter of average mass	1.5
Mass median diameter	3
Mass mean diameter	3.5

Table. Calculation of various distribution functions

avg dia	frequency	cum frac	fraction/In d	volume	vol*freq	vol	v fr/del d	largest d	v cum frac	v fr/ln d
						fraction				
0	0	0	0	0	0	0	0	0	0	0
2	104	0.104	0.012539	4.188787	435.6338	0.00023	5.75E-05	4	0.00023	2.77359E-05
5	160	0.264	0.394609	65.44979	10471.97	0.00553	0.002765	6	0.00576	0.013638381
7	161	0.425	0.559646	179.5942	28914.67	0.015269	0.007634	8	0.021029	0.053075427
8.5	75	0.5	0.636764	321.5548	24116.61	0.012735	0.012735	9	0.033764	0.108123873
9.5	67	0.567	0.635912	448.9201	30077.65	0.015883	0.015883	10	0.049647	0.150748857
12	186	0.753	0.552794	904.7779	168288.7	0.088868	0.022217	14	0.138514	0.264115413
15	61	0.814	0.456821	1767.144	107795.8	0.056923	0.028462	16	0.195438	0.426291361
18	79	0.893	0.354032	3053.625	241236.4	0.127389	0.031847	20	0.322826	0.570882282
27.5	103	0.996	0.184055	10889.21	1121589	0.592273	0.039485	35	0.915099	1.058355682
42.5	4	1	0.011215	40194.35	160777.4	0.084901	0.00566	50	1	0.238034813
70	0	1	0	179594.2	0	0	0	70	1	0
					1893703	1				

2.3 Observation and size measurment of particles

(1) Electron Microscopy

http://davinci.ethz.ch/solid/_research/elmi/methods.htm

- * Scanning electron microscope
- Imaging from secondary electron(<50eV) imaging (SE)

back-scattered electron imaging (BSE)

- -- Resolution: 2-3nm; magnification: 10~>30,000
- Spot size : 5nm; energy: 2~200eV to 50KeV
- - Information on chemical composition as well as topography

Latex balls, image from secondary electrons

Fe particles in carbon, left: from secondary electrons; Right: from back scattered

* Scanning probe microscopy

-Used to obtain surface property of the nanostructured materials e.g. films.

-3-D real space imaging and localized measurement of structure and properties -Obtain topographical data of surface by measuring interaction between tip and surface

-From atoms to $>250 \mu m \times 250 \mu m$;

-Vertical ranges of ~15 µm

http://www.iap.tuwien.ac.at/www/surface/STM_Gallery/stm_animated.gif

Scanning tunneling microscope

- Constant current mode
- Constant height mode

- STM: restricted to electrically conductive sample surface

a.) STM of silicon [Si (111) 7x7 reconstruction; 2x2 nm]; b.) AFM of graphite

Atomic force microscope

-Constant force mode

-Electrostatic interaction, current-induced, static magnetic interaction, capillary forces

-SPM using other probe and sample-surface interactions

- •Magnetic force microscope
- •Electrostatic force spectroscopy
- •Scanning voltage microscope
- •Kelvin probe microscope
- •Scanning thermal microscope
- •Near-field scanning optical microscopy
- •Scanning capacitance microscope
- •Force modulation microscope

- Also used for nanomanipulation, nanolithogrphy and nanodevice (sensor)

Use of "nano-pen"

- (2) Light scattering: laser particle sizer
- * Dynamic light scattering

http://www.bic.com/90oper.htm http://www.ap-lab.com/light_scattering.htm#Dynamic_Light_Scattering

- Data on scattered light intensity vs. time
- Quantifying Brownian diffusion from them
- Deducing size distribution from it

(3) Electrical migration

* Mass spectrometry

- Movement of charged particles in magnetic field

$$\frac{m}{q} = \frac{B^2 r^2}{2V}$$

where m: mass of particle; q: charge; B: field strength; r: bending radius

of the duct; V: applied voltage

* Differential mobility analyzer

$$Z = \frac{U_e}{E} = \frac{eC}{3\pi\mu d_p} \qquad for$$

for singly charged particles

- Small particles deposit on the central rod
- Only particles in very narrow size range can pass through the exit tube
- Number concentration measured in condensation nuclei counter
- Change E gives size distribution data

