Chapter 4. Formation and Growth of Nanoparticles - Theories

4.1 Introduction

*

- Breakdown (Disintegration) : by crushing, milling, spraying

Bulk fine particles

- Buildup (Growth) : nucleation and growth (condensation, coagulation)

4.2 Birth of Nanoparticles: Nucleation

Formation of nuclei: new-born particles

(1) Homogeneous nucleation

- Gibbs free energy change for a droplet from monomer molecules

- Saturation ratio

For solution-to-particle: For vapor-to-droplet or particle:where $c_{\textit{0}}$, $p_{\textit{0}}$: equilibrium solubility, vapor pressure 0 $\mathcal C$ $\mathcal C$ $S = -$ =cle: $S = \frac{p}{q}$

volume energy $\sim r^3$

 ΔG

interfacial energy $\sim r^2$

 ΔG ^{*}

 ΔG ,

Gibbs free energy change for water droplet formation

- Rate of nucleation

 $J(nuclei/(s)(cm^3))$ =(frequency of collision) (species concentration) (probability) $J = \frac{p}{(2\pi m kT)^{1/2}} (\pi d_p * 2) n_m \exp \left(-\frac{\Delta G^*}{kT}\right)$ $J = \frac{kT}{3\pi d\mu} n_m \exp\left(-\frac{\Delta G^*}{kT}\right)$ n_m : number concentration of the species Solution-to-particle Vapor-to-droplet or particle

- Critical saturation, S_{crit} *: S at J=1 Nucleation rate of

water droplets at 300K

(2) Heterogeneous nucleation

$$
\Delta G_{het}^* = f \Delta G^* = \frac{(2 + \cos \theta)(1 - \cos \theta)^2}{4} \Delta G^*
$$

Correction term f vs. the contact angle in radian

* Critical supersaturation ratio (S_{crit})

If $S > S_{\text{crit}} \Longrightarrow$ Homogeneous nucleation

 $S < S_{\textit{crit}} \Rightarrow$ Heterogeneous nucleation

* Used for formation of artificial rain (seed: AgCl, AgI)Core-shell particlesMonodisperse particlesFilms

* Particles or Films?

4.3 Condensational Growth of Nanoparticles

Growth of particles by collision followed by sticking

- Rate of condensation

http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/

If p_1 < p_2 , evaporation instead of condensation

For diffusion-controlled condensation

Integration yields

Integration yields
\n
$$
d_p^2 = k_D t + d_{p0}^2
$$
\n(*) where\n
$$
k_D = 8Dv_m(n_1 - n_2)
$$
\nConsidering a variation in size\n
$$
d_p = \langle d_p \rangle + \delta d_p
$$
\nand\n
$$
d_{p0} = \langle d_{p0} \rangle + \delta d_{p0}
$$
\nSubstituting the case into (*), positive numbers, which is equal to 1.

Substituting these into (*), omitting square term which is small

$$
\langle d_p > 2 + 2 < d_p > \delta d_p = k_D t + \langle d_{p0} > 2 + 2 < d_{p0} > \delta d_{p0}
$$

Since

 \dot{d} = $\frac{d_{p0}\delta d}{dt}$ $\delta\!d_{_{p}}=\frac{d_{_{p0}}\delta\!d_{_{p0}}}{d}$ $0 >^2$ $e \qquad \qquad < d_p >^2 = k_D t + < d_{p0} >^2 \quad (*)$

 p ^{p} p

Then

pdδSubstituting (**)

$$
\delta d_p = \frac{d_{p0}\delta d_{p0}}{\sqrt{k_D t + d_{p0}^2}}
$$

The variation in size decreases as growth proceeds!

For surface reaction-controlled condensation

Integration
$$
d_p = k_p t + d_{p0}
$$
 where $k_p = 2k_r v_m n_1$

$$
\therefore \delta d_p = \delta d_{p0}
$$

The variation in size is kept constant but the relative size variation decrease as growth proceeds!

4.4 Coagulation: Coalescence and Aggregation

Growth as a result of collision and subsequent coagulation with other particles.

- Sources of collision

Brownian motion, external force fields, particle-particle interaction

(polar, coulombic)

- Coagulation efficiency

Comparison of condensation and coagulation

(1) Shapes of particles coagulated (secondary particles)

Spherical/near-spherical growth

: Liquid-phase or liquid-like growth

- Liquid particles grow by "coalescence"..

Random (fractal) growth

: Solid-phase growth

- Fractal representation

where V: solid volume $V\thicksim l^D$

Aggregate of TiO2 nanoparticles

l: characteristic length of the aggregate

D: fractal dimension(≠1, 2, 3)

Directional (anisotropic) growth

With interparticle forces - electrical or magnetic dipoles e.g. Smoke particles, iron nanoparticles

Iron particles

* Solid particle growth

Primary particles

Secondary particles

- Coalescence or Aggregation?

-Depends on the characteristic times of collision and coalescence

(2) Mathematical expression for coagulation

 $N_{i,j}$: Number of collisions occurring per unit time per unit volume between the particles having diameters (volumes) $d_i(v_i)$ and $d_j(v_j)$ respectively. $N_{i,j}=b_{i,j}n_i n_j$

 n_i , n_j : number concentration of colliding particles v_i , v_j , respectively.(no./cm³) i, j: number of basic units making particles (e.g. i-mer and j-mer)In terms of continuous size distribution

> where $b_{i,j}$: collision frequency function "coagulation coefficient" $N(v_i, v_j) = b(v_i, v_j) n(v_i) n(v_j) dv_i dv_j$

Increase in size

$$
v_{new} = v_i + v_j
$$

$$
d_{p,new} = (d_{pi}^{3} + d_{pj}^{3})^{1/3}
$$

- Change in number concentration of the particles, v

$$
\frac{dn_k}{dt} = \frac{1}{2} \sum_{i+j=k} N_{i,j} - \sum_{i=0}^{\infty} N_{i,k} = \frac{1}{2} \sum_{i+j=k} b_{i,j} n_i n_j - n_k \sum_{i=0}^{\infty} b_{i,k} n_i
$$

$$
\frac{dn(v)}{dt} = \frac{1}{2} \int_0^v b(v', v - v') n(v') n(v - v') dv' - n(v) \int_0^{\infty} b(v, v') n(v') dv'
$$

Input by coagulation Output by coagulation

- For Brownian coagulation

For continuum regime
$$
b(v, v') = \left(\frac{2kT}{3\mu}\right) \left(\frac{1}{v^{1/3}} + \frac{1}{v^{1/3}}\right) \left(v^{\frac{1}{3}} + v^{\frac{1}{3}}\right)
$$
 or
\n
$$
b(v, v') = \left(\frac{2kT}{3\mu}\right) \left(\frac{1}{d_{pi}} + \frac{1}{d_{pj}}\right) (d_{pi} + d_{pj})
$$

- For polydisperse particles

When $d_i > d_j$, $b_{i,j} > b_{i,i}$ or $b_{j,i}$

- Different-size coagulation occurs faster than that between similar-size coagulation.

Monodisperse particles becomes polydisperse…

Polydisperse particles becomes monodisperse…

∴Self preserving model: distribution converges to $\sigma_{\rm g}=$ 1.4

- For monodisperse particles

$$
b = \frac{8kT}{3\mu} = K = 3.0 \times 10^{-16} C_c m^3 / s
$$

Under standard conditions

$$
\frac{dn_k}{dt} = \frac{K}{2} \sum_{i+j=k} n_i n_j - K n_k \sum_{i=0}^{\infty} n_i
$$

Solving for total number concentration of particles, N and

average diameter of the particles, d $N_{0}Kt$ $\,N$ $N(t) =$ $t) = \frac{0}{1 + N_0}$ $\frac{N_0}{1+N_0}$ $(t) = \frac{1}{1 +}$ = $\frac{0}{2}$ $\Big)^{1/3}$ $_0$ $\bigwedge N(t)$ $\left(t\right)$ \int $\bigg)$ \setminus $=$ $\setminus N(t)$ N_{\cdot} $d_{\alpha} \longrightarrow N$ dtand $\frac{u}{v}$

4.5 Some Comments on Particle Growth

(1) Overall growth

Time

(2) Growth mechanisms and particle size distribution

* Nucleation

- increase of particle number concentration

- may cause accelerating the rate of coagulation

- ^gives delta function in particle size distribution in given condition

* Condensation

- No effect of particle number concentration

- results in monodisperse size distribution.

* Coagulation

- Decreases in particle number concentration

- ^gives polydisperse size distribution in growth process

- Matijevic's method

- (3) Preparation of monodisperse particles
	- Maintain low rate of nucleation
		- using low supersaturation
		- inducing heterogeneous nucleation
	- Allow the same growth time for all the particles by shortening the time of nucleation
	- Suppress coagulation
		- Using electrostatic repulsion (electrical double layer)
		- Using adsorption of surfactants and macromolecules
		- Rapid cooling and dilution

(4) Composite particles

* Mixed –phase particles from mixtures of precursors:

Since reaction (or evaporation), critical supersaturation, saturation: different for each component,

- Different history of nucleation

- Possible occurrence of heterogeneous nucleation

- Different condensation rate

- uniform distribution of components within each particle: unexpected

"Composition gradient"

- Confined growth: preferred

e.g. spray-pyrolysis, emulsion, in-pore and in-layer growth

* Core-shell composite particles

coating of existing particles

start with heterogeneous nucleation and subsequent growth