Chapter 4. Formation and Growth of Nanoparticles - Theories

4.1 Introduction

- Breakdown (Disintegration) : by crushing, milling, spraying

fine particles

- Buildup (Growth) : nucleation and growth (condensation, coagulation)

*

4.2 Birth of Nanoparticles: Nucleation

Formation of nuclei: new-born particles

(1) Homogeneous nucleation

- Gibbs free energy change for a droplet from monomer molecules

- Saturation ratio

For solution-to-particle: $S = \frac{c}{c_0}$ For vapor-to-droplet or particle: $S = \frac{p}{p_0}$ where c_0 , p_0 : equilibrium solubility, vapor pressure

volume

energy $\sim r^3$

ΔG

interfacial energy $\sim r^2$

 ΔG

ΔG.

Gibbs free energy change for water droplet formation

- Rate of nucleation

 $J(nuclei/(s)(cm^{3})) = (frequency of collision) (species concentration) (probability)$ $Solution-to-particle \quad J = \frac{kT}{3\pi d\mu} n_{m} \exp\left(-\frac{\Delta G^{*}}{kT}\right)$ $Vapor-to-droplet or particle \quad J = \frac{p}{(2\pi mkT)^{1/2}} (\pi d_{p} *^{2}) n_{m} \exp\left(-\frac{\Delta G^{*}}{kT}\right)$ $n_{m}: number concentration of the species$

- Critical saturation, S_{crit}^* : S at J=1

Nucleation rate of water droplets at 300K

(2) Heterogeneous nucleation

$$\Delta G_{het}^* = f \Delta G^* = \frac{(2 + \cos \theta)(1 - \cos \theta)^2}{4} \Delta G^*$$

Correction term f vs. the contact angle in radian

* Critical supersaturation ratio (S_{crit})

If $S > S_{crit} \Rightarrow$ Homogeneous nucleation

 $S < S_{crit} \Rightarrow$ Heterogeneous nucleation

* Used for formation of artificial rain (seed: AgCl, AgI) Core-shell particles Monodisperse particles Films

* Particles or Films?

4.3 Condensational Growth of Nanoparticles

Growth of particles by collision followed by sticking

- Rate of condensation

http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/

	Gas phase	Liquid phase
Diffusion limited	$d_p \ll \lambda_{gas} \qquad \frac{dd_p}{dt} = \frac{2v_m(p_1 - p_2)}{(2\pi m kT)^{1/2}}$	$\frac{dd_p}{dt_p} = \frac{4Dv_m(n_1 - n_2)}{dt_p}$
	$d_p >> \lambda_{gas} \qquad \frac{dd_p}{dt} = \frac{4Dv_m(p_1 - p_2)}{d_p kT}$	dt d_p
<i>Surface reaction limited</i>	$\frac{dd_p}{dt} = \frac{2k_r \alpha v_m p_1}{\left(2\pi m kT\right)^{1/2}}$	$\frac{dd_p}{dt} = 2k_r v_m n_1$
Droplet phase reaction limited	$\frac{dd_p}{dt} = \frac{d_p}{3} \rho_p \left(\sum_{i=1}^R M_i v_i\right) r$	

If p₁<p₂, evaporation instead of condensation

For diffusion-controlled condensation

Integration yields

$$d_{p}^{2} = k_{D}t + d_{p0}^{2} \quad (*) \quad \text{where} \quad k_{D} = 8Dv_{m}(n_{1} - n_{2})$$
Considering a variation in size $d_{p} = \langle d_{p} \rangle + \delta d_{p}$ and $d_{p0} = \langle d_{p0} \rangle + \delta d_{p0}$
Substituting these into (*), omitting square term which is small
$$\langle d_{p} \rangle^{2} + 2 \langle d_{p} \rangle \delta d_{p} = k_{D}t + \langle d_{p0} \rangle^{2} + 2 \langle d_{p0} \rangle \delta d_{p0}$$

Since $\langle d_p \rangle^2 = k_D t + \langle d_{p0} \rangle^2$ (**) Then $\delta d_p = \frac{d_{p0} \delta d_{p0}}{d_p}$ Substituting (**) $\delta d_p = \frac{d_{p0} \delta d_{p0}}{\sqrt{k_D t + d_{p0}^2}}$

The variation in size decreases as growth proceeds!

For surface reaction-controlled condensation

Integration
$$d_p = k_p t + d_{p0}$$
 where $k_p = 2k_r v_m n_1$
 $\therefore \delta d_p = \delta d_{p0}$

The variation in size is kept constant but the relative size variation decrease as growth proceeds!

4.4 Coagulation: Coalescence and Aggregation

Growth as a result of collision and subsequent coagulation with other particles.

- Sources of collision

Brownian motion, external force fields, particle-particle interaction

(polar, coulombic)

- Coagulation efficiency

-	-	
	condensation	coagulation
size	increase	increase
Particle number concentration	No change	decrease
Total particle mass concentration	increase	decrease

Comparison of condensation and coagulation

(1) Shapes of particles coagulated (secondary particles)

Spherical/near-spherical growth

: Liquid-phase or liquid-like growth

- Liquid particles grow by "coalescence" ...

- Solid particles grow by "aggregation (agglomeration)" and followed by rapid sintering

Random (fractal) growth

: Solid-phase growth

- Fractal representation

 $V \sim l^D$ where V: solid volume

Aggregate of TiO2 nanoparticles

l: characteristic length of the aggregate

D: fractal dimension(\neq 1, 2, 3)

	Reaction-limited	Ballistic	Diffusion-limited
Particle-cluster		-	
	$D_f = 3.00$	$D_f = 3.00$	$D_f = 2.50$
Cluster-cluster		antig the	The section of the se
	$D_f = 2.09$	$D_f = 1.95$	$D_f = 1.80$

Directional (anisotropic) growth

With interparticle forces - electrical or magnetic dipoles e.g. Smoke particles, iron nanoparticles

Iron particles

* Solid particle growth

Primary particles

Secondary particles

- Coalescence or Aggregation?

-Depends on the characteristic times of collision and coalescence

(2) Mathematical expression for coagulation

 $N_{i,j}$: Number of collisions occurring per unit time per unit volume between the particles having diameters (volumes) $d_i(v_i)$ and $d_j(v_j)$ respectively. $N_{i,j} = b_{i,j}n_in_j$

 n_i , n_j : number concentration of colliding particles v_i , v_j , respectively.(no./cm³) i, j: number of basic units making particles (e.g. i-mer and j-mer) In terms of continuous size distribution

> $N(v_i, v_j) = b(v_i, v_j)n(v_i)n(v_j)dv_idv_j$ where $b_{i,j}$: collision frequency function "coagulation coefficient"

Increase in size

$$v_{new} = v_i + v_j$$
$$d_{p,new} = \left(d_{pi}^{3} + d_{pj}^{3}\right)^{1/3}$$

- Change in number concentration of the particles, v

$$\frac{dn_k}{dt} = \frac{1}{2} \sum_{i+j=k} N_{i,j} - \sum_{i=0}^{\infty} N_{i,k} = \frac{1}{2} \sum_{i+j=k} b_{i,j} n_i n_j^{OP} - n_k \sum_{i=0}^{\infty} b_{i,k} n_i$$
$$\frac{dn(v)}{dt} = \frac{1}{2} \int_0^v b(v', v - v') n(v') n(v - v') dv' - n(v) \int_0^\infty b(v, v') n(v') dv'$$

Input by coagulation Output by coagulation

- For Brownian coagulation

For continuum regime
$$b(v,v') = \left(\frac{2kT}{3\mu}\right) \left(\frac{1}{v^{1/3}} + \frac{1}{v'^{1/3}}\right) \left(v^{\frac{1}{3}} + v'^{\frac{1}{3}}\right)$$
 or
 $b(v,v') = \left(\frac{2kT}{3\mu}\right) \left(\frac{1}{d_{pi}} + \frac{1}{d_{pj}}\right) \left(d_{pi} + d_{pj}\right)$

- For polydisperse particles

When
$$d_i > d_j$$
, $b_{i,j} > b_{i,i}$ or $b_{j,j}$

- Different-size coagulation occurs faster than that between similar-size coagulation.

Monodisperse particles becomes polydisperse...

Polydisperse particles becomes monodisperse...

::Self preserving model: distribution converges to $\sigma_g = 1.4$

- For monodisperse particles

$$b = \frac{8kT}{3\mu} = K = 3.0 \times 10^{-16} C_c m^3 / s$$

Under standard conditions

$$\frac{dn_k}{dt} = \frac{K}{2} \sum_{i+j=k} n_i n_j - K n_k \sum_{i=0}^{\infty} n_i$$

Solving for total number concentration of particles, N and

average diameter of the particles, d $N(t) = \frac{N_0}{1 + N_0 K t} \quad and \quad \frac{d(t)}{d_0} = \left(\frac{N_0}{N(t)}\right)^{1/3}$

4.5 Some Comments on Particle Growth

(1) Overall growth

Time

(2) Growth mechanisms and particle size distribution

* Nucleation

- increase of particle number concentration

- may cause accelerating the rate of coagulation

- gives delta function in particle size distribution in given condition

* Condensation

- No effect of particle number concentration

- results in monodisperse size distribution.

* Coagulation

- Decreases in particle number concentration

- gives polydisperse size distribution in growth process

- Matijevic's method

- (3) Preparation of monodisperse particles
 - Maintain low rate of nucleation
 - using low supersaturation
 - inducing heterogeneous nucleation
 - Allow the same growth time for all the particles by shortening the time of nucleation
 - Suppress coagulation
 - Using electrostatic repulsion (electrical double layer)
 - Using adsorption of surfactants and macromolecules
 - Rapid cooling and dilution

(4) Composite particles

* Mixed – phase particles from mixtures of precursors:

Since reaction (or evaporation), critical supersaturation, saturation: different for each component,

- Different history of nucleation

- Possible occurrence of heterogeneous nucleation

- Different condensation rate

- uniform distribution of components within each particle: unexpected

"Composition gradient"

- Confined growth: preferred

e.g. spray-pyrolysis, emulsion, in-pore and in-layer growth

* Core-shell composite particles

coating of existing particles

start with heterogeneous nucleation and subsequent growth