
Chapter 7. Transport Phenomena of Nanoparticles



7.1 Drag force

(1) Stokes' law 

* Drag force, FD: 

- net force exerted by the fluid on the spherical particle in the direction of flow

where U : relative velocity between particle and fluid

CD: drag coefficient  

cf. For pipe flow 

where  f: Fanning friction factor 
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* CD vs. Rep

where

,   : density and viscosity of fluid

- For Rep < 1 (creeping flow region) 

Stokes' law

cf.  for pipe flow

- For 500<Rep<200,000 CD=~0.44
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(2) Non-continuum Effect 

* Mean-free path of fluid 

where nm : number concentration of molecules 

dm: diameter of molecules

For air at 1 atm and 25oC,     = 65.1nm 

For water at 25oC,       =  ?

* Particle-fluid interaction 
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* Knudsen number

-Continuum regime                            (<0.1)

-Transition regime                              (0.1~10)

-Free-molecular regime                       (>10 )

- Particles in water is always in continuum regime…

* Corrected drag force

where Cc: Cunnigham correction factor

- Particles in water do not need noncontinuum correction…

(3) Nonspherical particles

* Shape correction factor, 

In air at 1atm and 25oC
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7.2 Migration in Gravitational Force Field

For the particle suspending in the fluid

- Force balance

Terminal settling velocity

- For Stokes’ law regime
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* Dynamic equivalent diameters – calculated in air

In general

* Migration velocity

where  Um: migration or drift velocity in the fields

Note gravitational migration velocity: terminal settling velocity, UT

* Number flux by migration 

where  n: particle number concentration 

Irregular particles and its equivalent spheres
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Centrifugal migration

Electrical Migration

where q: charge of particles 

E : strength of electric field 

e: charge of electron (elementary unit of charge) 

ne : number of the units 

* Charging of particles 

- Applied to electrostatic precipitation 
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7.3 Electrical Migration

where q: charge of particles 

E : strength of electric field 

e: charge of electron (elementary unit of charge) 

ne : number of the units 

- Electrical mobility

- Applied to electrostatic precipitation in gas

* Charging of particles in gas (Later for the case of liquid)

- Direct ionization

- Static electrification: electrolyte, contact, spray, tribo, flame)

- Collision with ions or ion cluster
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* Diffusion charging

- Collision by ions and charged particles in Brrownian motion

Where      : mean thermal speed of the ions(=240m/s at SC)

Ni: ion concentration

KE: proportionality factor depending on unit used…

* Field charging

- Charging by unipolar ions in the presence of a strong electric field

Where    : relative permissibility of the particle

Zi: mobility of ions(=0.00015m2/V s

- Saturated after sufficient time…
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* Charge limit

- By electron ejection from mutual repulsion on the surface

where EL: surface field strength required for spontaneous emission of 

electrons(=9.0  108 V/m)

- Rayleigh limit

If mutual repulsion > surface tension force for liquid droplets

* bipolar charging: Kr85
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Electrophoresis

- Movement of nanoparticles in liquid medium

* Zeta potential : potential at the slip plane*

- Plane that separates the tightly bound liquid layer from the rest of liquid

- ~Stern layer

- determines the stability of colloidal dispersion or a sol

- requires >25mV for the stability

* Electrical migration velocity

* Electrical mobility
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7.3 Migration by Interaction with Fluids

(1) Diffusion 

* Brownian motion

: Random wiggling motion of particles by collision of

fluid molecules on them 

* Brownian Diffusion : 

Particle migration due to concentration gradient by Brownian motion

Fick's law 

where  Dp: diffusion coefficient of particles, cm2/s 

n : particle concentration by number 

cf. Diffusion of molecules
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* Coefficient of Diffusion 

cf. Liquid diffusivity 10-5cm2/s
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- Mass balance for the cube in the fluid 
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* One-dimensional diffusion from the origin

At t=0 n=0 for all x except x=0

At x=0, n=n0  for all t and 

The solution is :

Where

Differentiating with respect to x

Normal distribution with respect to x-axis 
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- Mean displacement:

- Standard deviation or root-mean square displacement

- represent particle movement (displacement) by diffusion

0=x

tDx prms 2==σ

Net displacement in 1s due to Brownian motion and gravity 
for standard-density spheres at standard conditions
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(2) Thermophoresis 

- Discovered by Tyndall in 1870 

- Examples of thermophoresis 

- Dust free surface on radiator or wall near it 

- Movement cigarette smoke to cold wall or window 

- Spoiling of the surface of the cold wall 

- Scale formation on the cold side in the heat exchanger 

* In free molecular regime 

Waldmann and Schmidt(1966) 
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T

T
dpF pth

∇
−=

r
r

2λ

T

T

T

T
U th

∇
=








 +

∇
−=∴

rr
r

ν
πα

ν
55.0~

8
14

3



* Correction for continuum fluid-particle interaction 

Brock(1962) 

where 

Terminal settling and thermophoretic velocities in a temperature
gradient of 1oC/cm at 293K
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(3) Phoresis by Light 

Photophoresis

- Where to be heated depends on the refractive index of the particle 

e.g. submicron particles in the upper atmosphere 

Radiation pressure

e.g. tails of comet, laser-lift of particles 



(4) Diffusion of medium 

Diffusiophoresis

Stefan flow

- For evaporating surface 

- For condensing surface 

e.g. Venturi scrubber 



7.4 Inertial Motion and Impact of Particles

(1) Inertial motion 

- For Stokesian particles 

Momentum (force) balance for a single sphere 

Neglecting buoyancy force

Integrating once, defining relation time as   

Integrating twice 
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(2) Simiulitude Law for Impaction : Stokesian Particles 

* Impaction: deposition by inertia

- For Re < 1 

Force balance around a particle

Defining dimensionless variables

where  U , L : characteristic velocity and length of the system 

Define Stokes number 
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Or in terms of displacement

↑

where                ,       : displacement vector

-

* Particle trajectory

↑

where 

- Two particle impaction regimes are similar

when the geometric, hydrodynamic and particle trajectories are the same…

- Applications 

- Cyclone, particle impactor, filter 
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