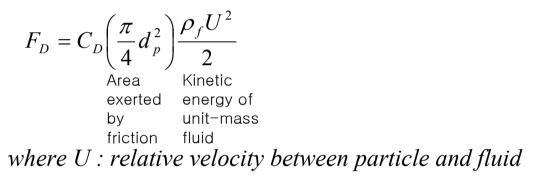
Chapter 7. Transport Phenomena of Nanoparticles

7.1 Drag force

(1) Stokes' law

* Drag force, F_D :

- net force exerted by the fluid on the spherical particle in the direction of flow



 C_D : drag coefficient

cf. For pipe flow

$$\tau_w = f \frac{\rho_f U^2}{2} \to F_w = f(\pi DL) \frac{\rho_f U^2}{2}$$

where f: Fanning friction factor

*
$$C_D$$
 vs. Re_p
where $\operatorname{Re}_p = \frac{d_p U \rho_f}{\mu}$
 ρ, μ : density and viscosity of fluid
- For $\operatorname{Re}_p < 1$ (creeping flow region)
 $F_D = 3\pi d_p \mu U$ Stokes' law
 $F_D = \left(\frac{24}{\operatorname{Re}_p}\right) \left(\frac{\pi}{4} d_p^2\right) \frac{\rho_f U^2}{2}$
 $\therefore C_D = \frac{24}{\operatorname{Re}_p}$
 $cf.$ for pipe flow $f = \frac{16}{\operatorname{Re}}$

- For 500 <
$$Re_p$$
 < 200,000 C_D = ~0.44
For 1 < Re_p < 500 C_D = $\frac{24}{Re_p} (1 + 0.15 Re_p^{0.687})$

(2) Non-continuum Effect

* Mean-free path of fluid

$$\lambda = \frac{1}{\sqrt{2}n_m \pi d_m^2}$$

where n_m : number concentration of molecules

 d_m : diameter of molecules

For air at 1 atm and 25°C, $\lambda = 65.1$ nm

For water at 25°C, $\lambda = ?$

* Particle-fluid interaction

Continuum regime transition regime free-molecule regime

* Knudsen number $K_n = \frac{\lambda}{d_p}$ -Continuum regime $K_n \sim 0$ (<0.1) -Transition regime $K_n \sim 1$ (0.1~10) -Free-molecular regime $K_n \sim \infty$ (>10)

- Particles in water is always in continuum regime...

* Corrected drag force

$$F_d = \frac{3\pi d_p \mu U}{C_C}$$

where C_c : Cunnigham correction factor $C_c = 1 + K_n [20514 + 0.8 \exp(-0.55 / K_n)]$

In air at 1atm and 25°C

d,, ит	Ĉ _e
0.01	22.7
0.05	5.06
0.1	2.91
1.0	1.168
10	1.017

- Particles in water do not need noncontinuum correction.

(3) Nonspherical particles χ * Shape correction factor, $\chi = \frac{F_D}{3\pi d_{\nu}\mu U}$

Powders	Dynamic shape factor
sphere cube Cylinder (L/D=4)	1.00 1.08
axis horizontal axis vertical	1.32 1.07
bituminous coal	1.05-1.11
quartz	1.36
sand	1.57
talc	2.04

7.2 Migration in Gravitational Force Field

For the particle suspending in the fluid

- Force balance
$$F_D = F_g - F_B$$

 $\therefore C_D \left(\frac{\pi}{4}d^2_p\right) \frac{\rho_f U^2}{2} = \frac{\pi}{6}(\rho_p - \rho_f)d^3_p g$
 $\therefore U_T = \left[\frac{4}{3}\frac{gd_p}{C_D}\left(\frac{\rho_p - \rho_f}{\rho_f}\right)\right]^{\frac{1}{2}}$
Terminal settling velocity

- For Stokes' law regime

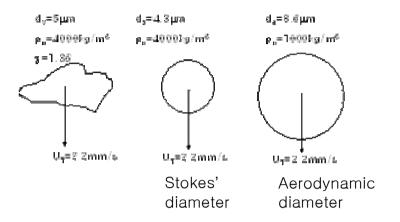
^aFor unit density particle in air at 1atm and 25°C

۸

$\frac{3\pi d_p \mu U}{C_c} = \frac{\pi}{6} \left(\rho_p - \rho_f \right) d^3_p g$	
$\therefore U^{T} = \frac{\left(\rho_{p} - \rho_{f}\right)gd^{2}{}_{p}C_{c}}{18\mu}$	

đ ₇ , µт	$oldsymbol{U_7}$, cm/sª
0.1	8.8×10 ⁻⁵
0.5	1.0×10 ⁻³
1.0	3.5×10 ⁻³
5.0	7.8×10 ⁻²
10.0	0.31

* Dynamic equivalent diameters – calculated in air



Irregular particles and its equivalent spheres

In general

* *Migration velocity*

$$F_{ext} = F_D \left(= \frac{3\pi\mu d_p}{C_c} U_m \right)$$

where U_m : migration or drift velocity in the fields Note gravitational migration velocity: terminal settling velocity, U_T * Number flux by migration

$$\vec{J} = n\vec{U}_m$$

where n: particle number concentration

$$\frac{Centrifugal migration}{F_{c}} = m_{p} \left(1 - \frac{\rho_{f}}{\rho_{p}} \right) \frac{U^{2}_{t}}{r} = m_{p} \left(1 - \frac{\rho_{f}}{\rho_{p}} \right) r \omega^{2}$$

$$Acceleration of$$

$$Centrifugation > g$$

$$\therefore U_{cf} = \frac{\left(\rho_{p} - \rho_{f} \right) d^{2}_{p} U^{2}_{t} C_{c}}{18 \mu r}$$

Electrical Migration

$$\vec{F} = q\vec{E} = n_e eE$$

where q: charge of particles E : strength of electric field e: charge of electron (elementary unit of charge) n_e : number of the units $\therefore U_e = \frac{n_e eEC_c}{3\pi\mu d_p}$

* Charging of particles

- Applied to electrostatic precipitation

7.3 Electrical Migration

$$\vec{F} = q\vec{E} = n_e eE$$

where q: charge of particles
E: strength of electric field
e: charge of electron (elementary unit of charge)

$$n_e$$
: number of the units
 $\therefore U_e = \frac{n_e eEC_c}{3\pi\mu d_p}$ Electrical migration velocity

- Electrical mobility

$$Z_i = \frac{U_0}{E} = \frac{n_e e C_c}{3\pi\mu}$$

- Applied to electrostatic precipitation in gas

- * Charging of particles in gas (Later for the case of liquid)
- Direct ionization
- Static electrification: electrolyte, contact, spray, tribo, flame)
- Collision with ions or ion cluster

* Diffusion charging

- Collision by ions and charged particles in Brrownian motion

$$n(t) = \frac{d_{p}kT}{2K_{E}e^{2}} \ln \left[1 + \frac{\pi K_{E}d_{p}\overline{c_{i}}e^{2}N_{i}t}{2kT} \right]$$

Where $\overline{c_{i}}$: mean thermal speed of the ions(=240m/s at SC)

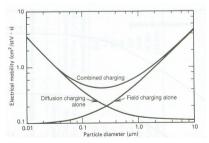
 N_i : ion concentration K_E : proportionality factor depending on unit used... $K_E = \frac{1}{4\pi\varepsilon_0}$

* Field charging

- Charging by unipolar ions in the presence of a strong electric field

$$n(t) = \left(\frac{3\varepsilon}{\varepsilon + 2}\right) \left(\frac{Ed_p^2}{4K_E e}\right) \left(\frac{\pi K_E eZ_i N_i t}{1 + \pi K_E eZ_i N_i t}\right)$$

Where ε_r : relative permissibility of the particle Z_i : mobility of ions(=0.00015m2/V s



- Saturated after sufficient time...

* Charge limit

- By electron ejection from mutual repulsion on the surface

$$n_{\rm max} = \frac{d_p^2 E_L}{4K_E e}$$

where E_L : surface field strength required for spontaneous emission of electrons(=9.0×10⁸ V/m)

- Rayleigh limit

If mutual repulsion > surface tension force for liquid droplets

$$n_{\max} = \left(\frac{2\pi\sigma d_p^{3}}{K_E e^2}\right)^{1/2}$$

* bipolar charging: Kr₈₅

Electrophoresis

- Movement of nanoparticles in liquid medium
- * Zeta potential : potential at the slip plane*
 - Plane that separates the tightly bound liquid layer from the rest of liquid

- ~Stern layer

- determines the stability of colloidal dispersion or a sol
- requires > 25 mV for the stability

$$\zeta = \frac{q}{2\pi\varepsilon_0\varepsilon_r d_p (1 + \kappa d_p / 2)}$$

* Electrical migration velocity

$$U_E = \frac{2\varepsilon_0\varepsilon_r\zeta E}{3\pi\mu}$$

* Electrical mobility

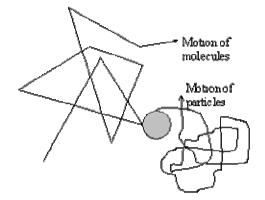
$$B_E = \frac{U_0}{E} = \frac{2\varepsilon_0 \varepsilon_r \zeta}{3\pi\mu}$$

7.3 Migration by Interaction with Fluids

(1) Diffusion

* Brownian motion

: Random wiggling motion of particles by collision of fluid molecules on them



* <u>Brownian Diffusion</u> :

Particle migration due to concentration gradient by Brownian motion

 $\vec{J} = -D_p \vec{\nabla} n$

Fick's law

where D_p : diffusion coefficient of particles, cm^2/s

n : *particle concentration by number*

cf. Diffusion of molecules

* Coefficient of Diffusion

$$D_p = \frac{kTC_c}{3\pi\mu d_p}$$

Diffusion Coefficient of Unit-density sphere at 20°C in air

Particle diameter,	Diffusion coefficient, cm²/s
0.00037(air molecule)	0.19
0.01	5.2×10 ⁻⁴
0.1	6.7×10 ⁻⁶
1.0	2.7×10 ⁻⁷
10	2.4×10 ⁻⁸

cf. Liquid diffusivity 10⁻⁵cm²/s

- Mass balance for the cube in the fluid

$$\frac{\partial n}{\partial t} \Delta x \Delta y \Delta z = [J_x - (J_x + \Delta J_x)] \Delta y \Delta z$$
Net input in x direction

$$+[J_y - (J_y + \Delta J_y)] \Delta x \Delta z$$
Net input in y direction

$$+[J_z - (J_z + \Delta J_z)] \Delta x \Delta y$$
Net input in z direction

$$\therefore \frac{\partial n}{\partial t} \Delta x \Delta y \Delta z = -\Delta J_x \Delta y \Delta z - \Delta J_y \Delta x \Delta z - \Delta J_z \Delta x \Delta y$$

$$/\Delta x \Delta y \Delta z$$
and
$$\Delta x, \Delta y, \Delta z \rightarrow 0$$

$$\therefore \frac{\partial n}{\partial t} = -\left(\frac{\partial J_x}{\partial x} + \frac{\partial J_y}{\partial y} + \frac{\partial J_z}{\partial z}\right) = -\vec{\nabla} \cdot \vec{J}$$
- Introducing Fick's law

$$\frac{\partial n}{\partial t} = \vec{\nabla} \cdot (D_p \vec{\nabla} n) = D_p \nabla^2 n$$
B.C. $n = 0$
Constant D_p
- Integration (or solution) gives: $n = n$ (x,y,z,t),
or particle number concentration at (x,y,z) at t

Х

* One-dimensional diffusion from the origin

$$\frac{\partial n}{\partial t} = \vec{\nabla} \cdot \left(D_p \vec{\nabla} n \right) = D_p \nabla^2 n \longrightarrow \therefore \frac{\partial n}{\partial t} = D_p \frac{\partial^2 n}{\partial x^2}$$

At t=0 n=0 for all x except x=0
At x=0, n=n₀ for all t and
$$\left(\frac{\partial n}{\partial x}\right)_{x=0} = 0$$

The solution is :

$$n(\eta) = 1 - \frac{2}{\pi} \int_{0}^{\eta} e^{-\eta^{2}} d\eta \equiv 1 - erf(\eta) \equiv erfc(\eta)$$

Where
$$\eta \equiv \frac{z}{2\sqrt{D_p t}}$$

Differentiating with respect to \vec{x}

$$n(x,t)\frac{dn(x,t)}{n_0} = \frac{1}{(4\pi D_p t)^{1/2}} \exp\left(\frac{-x^2}{4D_p t}\right) dx$$

Normal distribution with respect to x-axis

- Mean displacement: $\overline{x} = 0$

- Standard deviation or root-mean square displacement

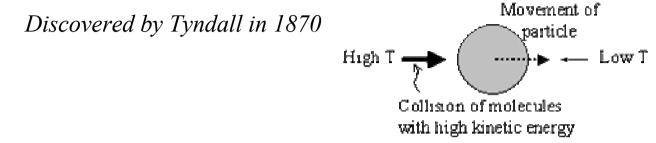
$$\sigma = x_{rms} = \sqrt{2D_p t}$$

- represent particle movement (displacement) by diffusion

Net displacement in 1s due to Brownian motion and gravity for standard-density spheres at standard conditions

Particle diameter, μm	x _{rms} in 1s(m)	Settling in 1s(m)	x _{rms} /x _{sett}
0.01	3.3×10 ⁻⁴	6.9×10 ⁻⁸	4800
0.1	3.7×10 ⁻⁵	8.8×10 ⁻⁷	42
1.0	7.4×10 ⁻⁶	3.5×10 ⁻⁶	0.21
10	2.2×10 ⁻⁶	3.1×10 ⁻³	7.1×10 ⁻⁴

(2) Thermophoresis



- Examples of thermophoresis

- Dust free surface on radiator or wall near it

- Movement cigarette smoke to cold wall or window

- Spoiling of the surface of the cold wall

- Scale formation on the cold side in the heat exchanger

* In free molecular regime

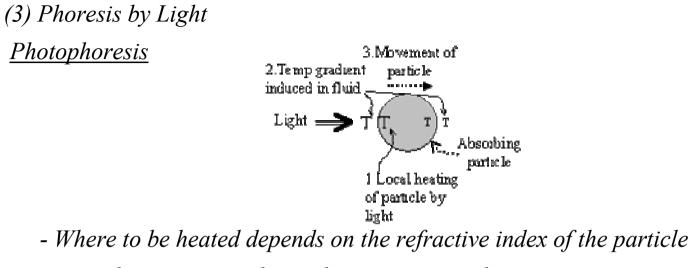
Waldmann and Schmidt(1966) $\vec{F}_{th} = -p\lambda d^2_p \frac{\vec{\nabla}T}{T}$ $\therefore \vec{U}_{th} = -\frac{3\nu\vec{\nabla}T}{4\left(1+\frac{\pi\alpha}{8}\right)T} = 0.55\nu \frac{\vec{\nabla}T}{T}$ - independent of d_p

* Correction for continuum fluid-particle interaction

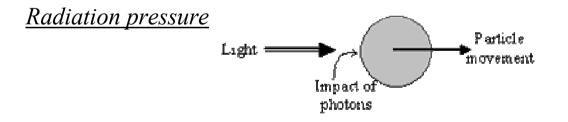
Brock(1962) $\vec{F}_{th} = \frac{-9\pi\mu^2 d_p H \vec{\nabla} T}{2\rho_G T}$ where $H \sim \frac{1}{1+6Kn} \left(\frac{\frac{k_G}{k_p} + 4.4Kn}{1+2\frac{k_G}{k_p} + 8.8Kn} \right)$ $\therefore \vec{U}_{th} = \frac{-3\mu C_c H \vec{\nabla} T}{2\rho_G T}$

Terminal settling and thermophoretic velocities in a temperature gradient of 1°C/cm at 293K

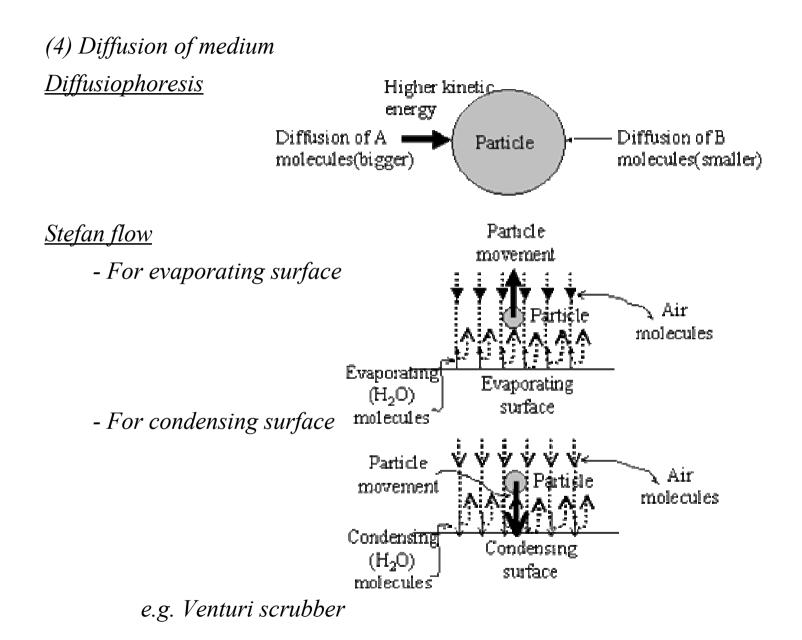
Particle diameter(<i>µm</i>)	Terminal settling velocity (m/s)	Thermophoretic velocities in a temperature gradient of 1°C/cm at 293K ^a
0.01	6.7×10 ⁻⁸	2.8×10 ⁻⁶
0.1	8.6×10 ⁻⁷	2.0×10 ⁻⁶
1.0	3.5×10 ⁻⁵	1.3×10 ⁻⁶
10.0	3.1×10 ⁻³	7.8×10 ⁻⁷
$a_{k_p} = 10k_a$		



e.g. submicron particles in the upper atmosphere



e.g. tails of comet, laser-lift of particles



7.4 Inertial Motion and Impact of Particles

(1) Inertial motion

- For Stokesian particles

Momentum (force) balance for a single sphere

Neglecting buoyancy force

$$\therefore \frac{\pi}{6} d^{3}{}_{p} \rho_{p} \frac{dU}{dt} = -\frac{3\pi\mu d_{p}U}{C_{c}}$$
$$m_{p} \frac{dU}{dt} = -F_{D}$$

Integrating once, defining relation time as $\tau = \frac{\rho_p d^2 {}_p C_c}{18\mu}$ Net displacement in 1s due to $U = U_0 e^{-t/\tau}$ $U = U_0 e^{-t/\tau}$

Integrating twice
$$x = U_0 \tau \left(1 - e^{-\frac{t}{\tau}}\right)$$

$$As \frac{t}{\tau} \to \infty, \qquad x \sim U_0 \tau = \frac{\rho_p d^2_p U_0 C_c}{18\mu} \equiv s$$

stop distan

	Particle diameter, μm	Re _o	S at U ₀ =10m/ s	time to travel 95% of S
	0.01	0.0066	7.0×10 ⁻⁵	2.0×10 ⁻⁸
	0.1	0.066	9.0×10 ⁻⁴	2.7×10 ⁻⁷
	1.0	0.66	0.035	1.1×10 ⁻⁵
ce	10	6.6	2.3*	8.5×10 ^{-4*}
	100	66	127*	0.065*

* out of Stokes' range

(2) Simiulitude Law for Impaction : Stokesian Particles

* Impaction: deposition by inertia

- For Re < *1*

Force balance around a particle

 $m_{p} \frac{d\overrightarrow{U_{p}}}{dt} = -3\pi\mu d_{p} \left(\overrightarrow{U_{p}} - \overrightarrow{U_{f}}\right)$ Defining dimensionless variables $\overrightarrow{U_{1}} \equiv \frac{\overrightarrow{U}}{L}$, $\overrightarrow{U_{f1}} \equiv \frac{\overrightarrow{U_{f}}}{L}$ and $\theta \equiv \frac{tU}{L}$ where U, L: characteristic velocity and length of the system $\frac{\pi}{6} d_{p}^{-3} \frac{Ld\overrightarrow{U_{1}}}{(L/U)d\theta} = -3\pi\mu d_{p} \left(L\overrightarrow{U_{1}} - L\overrightarrow{U_{f1}}\right)$ (subscript p: omitted)

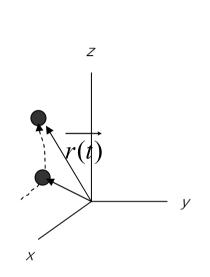
$$\frac{\rho_p d_p^2 U}{18\mu L} \frac{d\overrightarrow{U_1}}{d\theta} = -\left(\overrightarrow{U_1} - \overrightarrow{U_{f1}}\right)$$

Define Stokes number

$$St = \frac{\rho_p d^2_p U}{18\mu L} = \frac{\tau U}{L} \equiv \frac{\text{particle persistence}}{\text{size of obstacle}}$$
$$\therefore St \frac{d\overrightarrow{U_1}}{d\theta} = -\left(\overrightarrow{U_1} - \overrightarrow{U_{f1}}\right)$$

Or in terms of displacement

$$St \frac{d^{2} \vec{r_{1}}}{d\theta^{2}} + \frac{d \vec{r_{1}}}{d\theta} = \overrightarrow{U_{f1}}$$
where $\vec{r_{1}} \equiv \frac{\vec{r}}{L}$, \vec{r} : displacement vector
- The solution gives $\vec{r_{1}(\theta)}$, $\vec{r(t)}$ or where the particle is at time t...
* Particle trajectory $\therefore \vec{r_{1}(\theta)} = f(St, \text{Re}, R)$
where $R = \frac{d_{p}}{L}$
Geometric
Similarity



- Two particle impaction regimes are similar

when the geometric, hydrodynamic and particle trajectories are the same...

- Applications

- Cyclone, particle impactor, filter