Chapter 8. Separation and Classification of Nanoparticles

8.1 Introduction

- Separation = recovery = collection
- Classification

Separation Mechanisms

- Sedimentation*: Settling chamber, centrifuge
- Inertial deposition: Cyclone*, scrubber, inertial impactor
- Brownian diffusion: Diffusion batteries
- Migration of charged particle in an electric field :

Electrostatic precipitator, dynamic mobility analyzer

- Thermophoresis: Thermal precipitator (thermopositor)
- Filters: particle collection by the combined mechanism.

* Generally not suitable for nanoparticle collection but used for precollector

Collection efficiency

- Fraction of particles fed in collected (deposited) on the interior wall of the collector...

- * Fractional (grade) efficiency
 - based on number of particles

$$G_N(d_p) \equiv \frac{n_{feed}(d_p)dd_p - n_{product}(d_p)dd_p}{n_{feed}(d_p)dd_p} = \frac{n_{feed}(d_p) - n_{product}(d_p)}{n_{feed}(d_p)}$$

- based on mass of particles

$$G_{M}(d_{p}) \equiv \frac{n_{m,feed}(d_{p}) - n_{m,product}(d_{p})}{n_{m,feed}(d_{p})}$$

cf. $f(d_p)$ vs. $n(d_p)$

* Total efficiency

$$E_T = \int_0^\infty G(d_p) n(d_p) dd_p$$

Considering the particle trajectory in differential length analysis

$$\therefore G(d_p) = 1 - \exp\left(-\frac{U_T(d_p)L}{UH}\right) = 1 - \exp\left[-\frac{A_C U_T(d_p)}{Q}\right]$$
* Cut size (diameter): $d_{p,50}$
: particle diameter at $G(d_p) = 0.5$

(2) Inertial Separator

* Particle trajectory from similitude analysis and thus for $G(d_p)$ $G(d_p) = f(St, \operatorname{Re}, d_p / L)$

where L: characteristic length of the separator

U: characteristic velocity of the particle in the separator where $St = \frac{\rho_P d_P^2 U}{18 \mu L}$ *and* $\text{Re} = \frac{\rho_f U L}{\mu}$

* For given inertial separator

- Similar similitude analysis gives

$$Eu = f(\text{Re})$$
 where $Eu = \frac{\Delta p}{\rho_f v^2/2}$

Cyclone (hydrocyclone)

Flow patterns in cyclones

- Grade efficiency of practical cyclone

Based on fluid tangential velocity profile $U_f r^m = const$ $G(d_p) = 1 - \exp(-\Psi d_p^M)$ where $M = \frac{1}{m+1}$, $m = 1 - (1 - 0.67D_c^{0.14}) \left(\frac{T}{283}\right)^{0.3}$ $\Psi = 2 \left[\frac{KQ\rho_p C_c(m+1)}{18\mu D_c^3}\right]^{M/2}$ K: dimensionless geometric parameter

where $D_c(m)$; $d_p(cm)$; $\rho(g/cm^3)$; T(K); $\mu(g/cms)$; $Q(m^3/s)$

- From both theoretical and actual analysis for given cyclone and

For wide range of Re,

$$St_{50} \left(= \frac{\rho_P d_P^2 U}{18 \mu D} \right) \sim constant \rightarrow d_{p,50} \propto \sqrt{\mu D^3 / \rho_P Q}$$

$$Eu \left(= \frac{\Delta P}{\rho_f U^2 / 2} \right) \sim constant \rightarrow \Delta p \propto \frac{Q^2}{D^4}$$

4-

* Standard Cyclone Design – determination of dimension "Stairmand design rule"

at Image: Stairmand, High efficiency 4.0 1.5 0.375 0.5 0.2 0.5 0.5 Image: Stairmand, High efficiency Image: Stairmand, High efficiency 4.0 1.5 0.375 0.5 0.2 0.5 0.5 Image: Stairmand, High efficiency Image: Stairmand, High efficiency 4.0 1.5 0.575 0.875 0.375 0.75 0.75	Cyclone type	Н	h	D_s	L	b	а	D_j
$\begin{array}{c c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Stairmand, High efficiency	4.0	1.5	0.375	0.5	0.2	0.5	0.5
Jiowrate	Stairmand, High flowrate	4.0	1.5	0.575	0.875	0.375	0.75	0.75

- High efficiency Stairmand cyclone: $St_{50}=1.4x10^{-4}$ and Eu=320High flowrate Stairmand cyclone: $St_{50}=6x10^{-3}$ and Eu=46

- Separation by impact on the surface perpendicular to the flow

- From numerical and/or experimental analysis - St_{50} : also almost independent of Re and further independent of geometry... *For 500 < Re < 3000 and $S/D_j > 1.5$ For circular nozzle, $St_{50} = 0.22$ For rectangular nozzle, $St_{50} = 0.53$ $\therefore d_{p50} = \left(\frac{18\mu DSt_{50}}{\rho_p U}\right)^{1/2}$ - To collect nanoparticles, $D \downarrow \downarrow$, $U \downarrow \downarrow$ and $C_c \uparrow \uparrow$

Vacuum operation with supersonic velocity is required...

"hypersonic impactor"

* Cascade impactor

- Overlapping of efficiency curve of one stage with neighboring plate: avoided

- Measurement of particle size distribution
- Used for classification of particles
- * Andersen impactor

Venturi Scrubbers

- Collection of particles by use of water spray
 - Scavenging of particles by water droplets $\ensuremath{\boxtimes}\ensuremath{\mathbb{P}}$
 - Formation of slurry droplets by condensational growth of particles in humid air

* Grade efficiency
Calvert(1984)
$$G(d_p) = 1 - \exp\left[\frac{1}{55}\frac{W}{G}\frac{U_g\rho_l d_d}{\mu_g}F(2St \cdot f)\right]$$

where W: water feed rate (m^3/s) G, U_g : gas flow rate (m^3/s) and gas velocity d_d :droplet diameter (m) f: empirical parameter encountering mode other than impaction, usually =0.5

- * Characteristics of venturi scrubber
 - High efficient for particles smaller than 2 um
 - The only choice for sticky, flammable or highly corrosive particles
 - High gas velocity($\sim 120 \text{ m/s}$) \rightarrow smaller-size equipment made of less corrosionresistant materials
 - Liquid-to-gas volumetric flow rate ratio = 0.001~0.003

8.3 Separation by Filters

(1) Introduction

Inorganic	Inorganic - Organic	Organic
 glasses ceramics metals polymers 	 ion-containing polymers polysiloxanes polyphosphazenes 	 natural polymers polysaccharides polypeptides rubbers synthetic polymers thermoplastics rubbery polymers soluble linear insoluble crosslinked

Filter and membrane materials

Formation Techniques

Fibers	Particles	Films
 wet-lay (many paper filters) dry-lay (spunbonded olefins) wound (glass filament cartridges) woven (polymeric and/or metal filter meshes) 	 sol-gel (ceramic ultrafilters) compression or sintering (metal and glass filters and frits) extruded (alumina microfilter monoliths) 	 extruded dense films (silicone films) extruded and stretched dense film (teflon and olefin microfilters) cast or extruded films with phase inversion step (cellulose acetate ultrafilters) nuclear-particle track etched (polycarbonate microfilters) electrochemical deposition (homoporous alumina microfilters)

Characteristics of filter and membranes

Transport properties	Pore size characteristics	Surface properties
 solvent flow (hydraulic permeability) solute or particle rejection (sieving coefficient) solute diffusion 	 pore size distribution pore shape pore morphology gradient through membrane thickness 	 chemical composition hydrophobicity -hydrophilicity surface charges solute-membrane affinity surface texture

* Filter rating

- Speed: how fast you can process a specified volume of fluid.

-Q/A ratio

- Collection efficiency
- Pressure drop: power requirement
- Stability: life, depending on chemical and mechanical strength

* Asymmetric membrane

(2) Gas filtration

Filter materials – cellulose (wood), glass, plastic fibers * *High-temperature filters - metal. graphite, quartz, ceramic* <u>*Air filters*</u> - *depth filters*

- Filter Types

Membrane(porous) filters

Capillary filters

Fibrous filters - Low solid loading ~mg/m³

e.g. air-conditioning filters

- $U \sim 0.25 - 1.5 m/s$, $\Delta p \sim 10 - 1000 Pa$

* HEPA (high efficiency particulate air) filter

- used in glove box, clean rooms, nuclear fuel industry

- $U \sim 0.1 m/s$, $\Delta p \sim 200 Pa$

- * Collection mechanisms of the fibrous filters
 - Diffusion : $< 0.3 \mu m$
 - Inertial impaction : $0.3 1 \mu m$
 - Interception : $1-10 \mu m$
 - *Gravity*: > 10 µm
 - Electrostatic attraction : $0.01 \mu m 5 \mu m$
- * Grade efficiency of air filters

where
$$E_f = 1.44 \left[\left(\frac{1-\alpha}{Ku} \right)^5 \left(\frac{\sqrt{\lambda}kT}{\mu} \right)^4 \left(\frac{1}{U_0^4 d_f^{-10}} \right) \right]^{1/9}$$
 Single fiber efficiency
 d_f : fiber diameter
 $Ku = -\frac{\ln \alpha}{2} - \frac{3}{4} + \alpha - \frac{\alpha^2}{4}$ Kuwabara number
 α : solid fraction(1- ε), ε : void fraction
 $\lambda = -\frac{\ln \alpha}{2} - \frac{3}{4} + \alpha - \frac{\alpha^2}{4} + \alpha$

 Λ, μ, T, U_0 : mean free path, viscosity, temperature, and approaching velocity of the gas

Filter efficiency for individual mechanism and combined mechanisms.

Particle diameter of minimum efficiency

$$d_{p,\min} = 0.885 \left[\left(\frac{Ku}{1-\alpha} \right) \left(\frac{\sqrt{\lambda}kT}{\mu} \right) \left(\frac{d_f^2}{U_0} \right) \right]^{2/9}$$

Bag (fabric) filters - surface filters

- Filter media : cylindrical bag type
- *L/D ratio ~ 20, D~ 120-150mm*
- High solid loading $\sim g/m^3$
- * Particle collection mechanisms
 - Firstly, collection on individual fibers
 - Secondly, filtration by particle cake
- * Collection Efficiency

$$G(d_p) = 1 - \exp(-\alpha W)$$

where W : Dust mass per unit bag surface area, Areal density, kg/m^{2} , W = cVt

c : Inlet dust loading, kg/m^3

t : Operation time since last cleaning *V* : Gas-to-cloth ratio, $V \equiv \frac{Q}{A}$ α : Cake penetration decay rate

* Permeation rate and pressure drop

$$V = \frac{\Delta p(t)}{R_m + R_C(t)}$$

where R_m : resistance of filter media, reciprocal of permeance R_c : resistance of filter cake, $R_c(t) = KcVt$ K: function of the properties of dust

- Constant-pressure operation: permeation rate decrease

* Regeneration (cleaning) of filters

- shaker (vibrator), reverse flow, pulse jet

- use of cleaning ring

(3) Liquid filtration See http://www.membranes.nist.gov/ACSchapter/pellePAGE.html

* Classification of liquid filtration The Membrane Spectrum

Dialysis Ion exchange Filtration Pervap Microfiltration Ultrafiltration NF RO very fine particles colloids Gas ----1 1 1 1 1 1 1 1 TTTTT 10 µ m 100 µm 1 Â 1 nm 10 nm 100 nm 1 μm Staphylococcus H₂O Sucrose Virus ~1 µm 2 Å ~1 nm ~50 nm y-globulin ~10 nm \odot 00 Θ \odot abumin Na ~3.5 nm Hemoglobin Pseudomonas 3.7 Å ~7 nm Starch ~0.35 µm ~10 µm Gas | Ionic | Molecular | Macro Molecular Macro Micro

(UF - ultrafiltration, MF microfiltration, NF - nanofiltration, RO - reverse osmosis. GS - gas and vapor separation)

Pore Characteristics

Macropore	width > 50 nm	UF, MF, and filtration
Mesopore	2 nm < width < 50 nm	UF, NF
Micropore	width < 2 nm	NF
Supermicropore	0.7 nm < width < 2 nm	RO, NF
Ultramicropore	width < 0.7 nm	RO, GS, dialysis
Ultrapore	width < 0.35 nm	RO, GS, dialysis

process	pore size [nm]	materials retained	materials passed	pressure [bar]
MF	> 50	particles (bacteria, yeasts etc)	water, salts macromolecules	< 2
UF	1 - 100	macromolecules, colloids, latices solutes M _W > 10,000	water, salts, sugars	1 - 10
NF	≈ 1	solutes $\ensuremath{M_W}\xspace > 500, diamond multivalent ions$	water, sugars, monovalent ions	5 - 20
RO	not relevant	all dissolved and suspended solutes (salts, sugars)	water	15 - 80

Table . Comparison of pressure-driven liquid (aqueous) phase membrane processes

* Permeation rate and pressure drop across filter membrane $V = \frac{\left(\Delta p - \Delta \Pi\right)}{R_m + R_c(t)}$ where Π : osmotic pressure

- Constant- pressure operation

- Constant-flow rate operation

* Clean-up by back-flushing

* Equipments

Epoxy sheet

8.4 Separation by Nonequilibrium Gas

- (1) Thermal precipitators
- Collection efficiency for particles having $d_p \langle 5-10 \mu m = 1 \rangle$
- Used in lab-scale particle collection for electron microscopes
- Volumetric flow rate ~ 4-5cm³/min
- ∆T=50-200K with 1000-10000K/cm
- * Wire-and-plate form
- Used for dust collection for British min
- 0.25mm Nichrome wire
- Temperature gradient: 8000K/cm
- Gas flow rate: 7.2cm³/min

Electron avalanche

* Positive corona vs. negative corona

Positive corona	Negative corona
<i>Suitable for domestic application</i>	-More stable than positive corona -Needs electron absorbing gas(SO ₂ , O ₂ , H ₂ O) -Produces O ₃ as byproduct -Suitable for industrial applications

*Diffusion charging vs. field charging

*Two-zone ESP

Collection Efficiency

$$\begin{split} G(d_p) &= 1 - \frac{n_{out}}{n_{in}} = 1 - \exp\left(\frac{PLU_e(d_p)}{Q}\right) = 1 - \exp\left(\frac{AU_e(d_p)}{Q}\right) \\ where \quad U_e &= \frac{qEC_c}{3\pi\mu d_p} \quad : electrical \ migration \ velocity \\ A_c: \ cross \ sectional \ area \ of \ the \ ESP \end{split}$$

P: Perimeter of the ESP wall (P=A/L)

Figure 2: Collection efficiency for an electrostatic precipitator as a function of particle size. The calculations have been made for a system with the following dimensions:

- Flow rate V =3.0 m³/s
- · Length of collection section L=2.6 m
- Diameter of the collector tube d=1.6 m
- · Corona current I=3.2 mA

<u>Particles suitable for ESP collection</u>

Electrical resistivity of particles $\leftarrow V = iR = i\frac{\rho l}{A}$ e.g. Fly ash : $10^6 \sim 10^{11} \Omega \cdot m$ Carbon black : $10^{-5} \Omega \cdot m$

If ρ(10²Ω·m : fast charge transfer to electrode → reentrainment of particles → G↓
If ρ)2×10⁸Ω·m: slow charge transfer (charge: longer stay) → reverse corona → G↓
∴ Optimum ρ for ESP:

 $10^6 \Omega \cdot m \langle \rho \langle 10^8 \Omega \cdot m \rangle$

* ESP vs. fabric filter system