Chapter 8. Separation and Classification of Nanoparticles

8.1 Introduction

- Separation = recovery = collection
- Classification

Separation Mechanisms

- Sedimentation*: Settling chamber, centrifuge
- Inertial deposition: Cyclone*, scrubber, inertial impactor
- Brownian diffusion: Diffusion batteries
- Migration of charged particle in an electric field :

Electrostatic precipitator, dynamic mobility analyzer

- Thermophoresis: Thermal precipitator (thermopositor)
- Filters: particle collection by the combined mechanism.

* Generally not suitable for nanoparticle collection but used for precollector

Collection efficiency

- Fraction of particles fed in collected (deposited) on the interior wall of the collector…

- * Fractional (grade) efficiency
	- based on number of particles

$$
G_N(d_p) \equiv \frac{n_{feed}(d_p)dd_p - n_{product}(d_p)dd_p}{n_{feed}(d_p)dd_p} = \frac{n_{feed}(d_p) - n_{product}(d_p)}{n_{feed}(d_p)}
$$

- based on mass of particles

$$
G_M(d_p) \equiv \frac{n_{m, feed}(d_p) - n_{m, product}(d_p)}{n_{m, feed}(d_p)}
$$

cf. $f(d_p)$ vs. $n(d_p)$

* Total efficiency

$$
E_T = \int_0^\infty G(d_p) n(d_p) dd_p
$$

Considering the particle trajectory in differential length analysis

$$
\therefore G(d_p) = 1 - \exp\left(-\frac{U_r(d_p)L}{UH}\right) = 1 - \exp\left[-\frac{A_c U_r(d_p)}{Q}\right]
$$

\n* Cut size (diameter): $d_{p,50}$
\n: particle diameter at $G(d_p) = 0.5$

(2) Inertial Separator

* Particle trajectory from similitude analysis and thus for $G(d_p)$ $G(d_p) = f(St, Re, d_p / L)$

where L: characteristic length of the separator

U: characteristic velocity of the particle in the separatorwhere $St \equiv \frac{F}{18 \mu L}$ and $St \equiv \frac{\rho_p d_p^2 U}{12.5}$ μ $\frac{\rho_{\scriptscriptstyle P}^{\scriptscriptstyle o}}{18}$ 2 ≡ $18 \mu L$ μ $\text{Re} \equiv \frac{\rho_f U L}{U}$

* For given inertial separator

- Similar similitude analysis gives

$$
Eu = f(\text{Re}) \qquad \text{where} \ \ Eu = \frac{\Delta p}{\rho_f v^2 / 2}
$$

Cyclone (hydrocyclone)

Flow patterns in cyclones

- Grade efficiency of practical cyclone

Based on fluid tangential velocity profile $\left\|U_{f}r^{m}\right\|$ = const where $M = \frac{1}{m+1}$, $G(d_p) = 1 - \exp(-\Psi d_p^{M})$ 1 $^{+}$ $\begin{bmatrix} V & Q & Q & Q & Q \end{bmatrix}$ = mM0.14 $\left(\frac{T}{T}\right)^{0.3}$ 2831 $m = 1 - (1 - 0.67 D_c^{0.14}) \left(\frac{T}{283} \right)$ $18 \mu D$ 3 $\frac{1}{2} \frac{KQ\rho_p C_c(m+1)}{2}$ $2\left[\frac{KQ\rho_pC_c(m+1)}{18\mu\Omega^3}\right]^M$ c $p - c$ D $\Psi = 2 \left[\frac{KQ \rho_p C_c (m+1)}{18 \mu D_c^3} \right]^{M/2} K$: dimensionless geometric parameter

where $D_c(m)$; d_p (cm); ρ (g/cm³); T(K); μ (g/c m s); $Q(m^3/s)$

- From both theoretical and actual analysis for given cyclone and

For wide range of Re,
\n
$$
St_{50} = \frac{\rho_p d_p^2 U}{18 \mu D} - constant \rightarrow d_{p,50} \propto \sqrt{\mu D^3 / \rho_p Q}
$$
\n
$$
Eu = \frac{\Delta P}{\rho_f U^2 / 2} - constant \rightarrow \Delta p \propto \frac{Q^2}{D^4}
$$

* Standard Cyclone Design – determination of dimension " Stairmand design rule"

$\mathop{\rm D{c}}$ $\frac{b}{1}$	Cyclone type	H	\boldsymbol{h}	D_{s}	\boldsymbol{L}	b	$\mathfrak a$	D_i
a‡ Γ $\,$ h …♥ a. \cdots	Stairmand, High efficiency	4.0	1.5	0.375	0.5	0.2	0.5	0.5
$rac{\varepsilon}{4}$ ΙH	Stairmand, High flowrate	4.0	1.5	0.575	0.875	0.375	0.75	0.75
Ds								

-High efficiency Stairmand cyclone: $St_{50} = 1.4x10^{-4}$ and $Eu = 320$ High flowrate Stairmand cyclone: $St_{50} = 6x10^{-3}$ and $Eu = 46$

- Separation by impact on the surface perpendicular to the flow

- From numerical and/or experimental analysis - St_{50} : also almost independent of Re and further independent of geometry... *For 500 < Re \leq 3000 and $S/D_i > 1.5$ For circular nozzle, $St_{50} = 0.22$ For rectangular nozzle, St $_{50}$ = 0.53 $^{\circ}$ $t_{50} = \left(\frac{18 \mu D St_{50}}{2^{11}}\right)^{1/2}$ 18 $\therefore d_{p50} = \left(\frac{18 \mu D St_{50}}{\rho_p U}\right)$

To collect nanoparticles, $D \downarrow \downarrow, U \downarrow$ and $C_c \uparrow \uparrow$

Vacuum operation with supersonic velocity is required…

"hypersonic impactor"

* Cascade impactor

- Overlapping of efficiency curve of one stage with neighboring plate: avoided

- Measurement of particle size distribution
- Used for classification of particles
- * Andersen impactor

Venturi Scrubbers

- Collection of particles by use of water spray
	- Scavenging of particles by water droplets ☞
	- Formation of slurry droplets by condensational growth of particles in humid air

* Grade efficiency
Calvert(1984)
$$
G(d_p) = 1 - \exp \left[\frac{1}{55} \frac{W}{G} \frac{U_g \rho_l d_d}{\mu_g} F(2St \cdot f) \right]
$$

where W : water feed rate (m^3 /s) G, U_{g} : gas flow rate (m³/s) and gas velocity d_d :droplet diameter (m) f: empirical parameter encountering mode other than impaction, usually $=0.5$

- * Characteristics of venturi scrubber
	- High efficient for particles smaller than 2 um
	- The only choice for sticky, flammable or highly corrosive particles
	- High gas velocity(~120 m/s) \rightarrow smaller-size equipment made of less corrosionresistant materials
	- Liquid-to-gas volumetric flow rate ratio $= 0.001$ ~0.003

8.3 Separation by Filters

(1) Introduction

Filter and membrane materials

Formation Techniques

Characteristics of filter and membranes

<i>Transport properties</i>	Pore size characteristics	Surface properties
• solvent flow (hydraulic <i>permeability</i>) · solute or particle rejection <i>(sieving coefficient)</i> · solute diffusion	· pore size distribution • pore shape · pore morphology gradient through membrane thickness	• chemical composition • hydrophobicity -hydrophilicity ◦ surface charges · solute-membrane affinity ◦ surface texture

* Filter rating

- Speed: how fast you can process a specified volume of fluid.

-Q/A ratio

- Collection efficiency
- Pressure drop: power requirement
- Stability: life, depending on chemical and mechanical strength

* Asymmetric membrane

(2) Gas filtration

Filter materials – cellulose (wood), glass, plastic fibers * High-temperature filters - metal. graphite, quartz, ceramic Air filters - depth filters

- Filter Types

Low solid loading \sim mg/m³

e.g. air-conditioning filters
- $U \sim 0.25 - 1.5 m/s$, $\Delta p \sim 10 - 1000 Pa$

* HEPA (high efficiency particulate air) filter

- used in glove box, clean rooms, nuclear fuel industry
- $U \approx 0.1$ m / s. An ≈ 200 Pa Fibrous filters Membrane(porous) filters Capillary filters

Low solid loading ~mg/m³

..g. air-conditioning filters

U ~ 0.25−1.5m / s, $\Delta p \sim 10 - 1000Pa$

PA (high efficiency particulate air) filter

- used in glove box,

 $- U \sim 0.1 m / s, \Delta p \sim 200 Pa$

- * Collection mechanisms of the fibrous filters
	- Diffusion $\frac{1}{2} < 0.3 \mu m$
	- Inertial impaction : $0.3 1 \mu m$
	- Interception : 1−10µm
	- $-$ Gravity: $> 10 \mu m$
	- Electrostatic attraction : .0 ⁰¹ µm−5µm
- * Grade efficiency of air filters

$$
G(d_p) = 1 - \exp\left(\frac{-4\alpha E_f t}{\pi d_f}\right)
$$

\nwhere $E_f = 1.44 \left[\left(\frac{1-\alpha}{Ku}\right)^5 \left(\frac{\sqrt{\lambda}kT}{\mu}\right)^4 \left(\frac{1}{U_0^4 d_f^{10}}\right) \right]^{1/9}$ Single fiber efficiency
\n d_f : fiber diameter
\n $Ku = -\frac{\ln \alpha}{2} - \frac{3}{4} + \alpha - \frac{\alpha^2}{4}$
\n α : solid fraction(1- ε), ε : void fraction
\n λ , μ , T , U_0 : mean free path, viscosity, temperature, and approaching
\nvelocity of the gas

 4α

Filter efficiency for individual mechanism and combinedmechanisms.

Particle diameter of minimum efficiency

$$
d_{p,\min} = 0.885 \left[\left(\frac{Ku}{1-\alpha} \right) \left(\frac{\sqrt{\lambda k}T}{\mu} \right) \left(\frac{d_f^2}{U_0} \right) \right]^{2/9}
$$

Bag (fabric) filters - surface filters

- Filter media : cylindrical bag type
- L/D ratio ~ 20, D~ 120-150mm
- -High solid loading $\sim g/m^3$
- * Particle collection mechanisms
	- Firstly, collection on individual fibers
	- Secondly, filtration by particle cake
- * Collection Efficiency

$$
G(d_p) = 1 - \exp(-\alpha W)
$$

where W : Dust mass per unit bag surface area, Areal density, kg/m^{2,} $W = cVt$

c : Inlet dust loading, $kg/m³$

t : Operation time since last cleaning V : Gas-to-cloth ratio, $V \equiv \frac{2}{\overline{A}}$ α : Cake penetration decay rate ${\cal Q}$ $V \equiv \frac{1}{2}$

* Permeation rate and pressure drop

$$
V = \frac{\Delta p(t)}{R_m + R_C(t)}
$$

where $R_{\scriptscriptstyle m}$: resistance of filter media, reciprocal of permeance R_c : resistance of filter cake, $R_c(t) = KcVt$ K: function of the properties of dust

- Constant-pressure operation: permeation rate decrease

* Regeneration (cleaning) of filters

- shaker (vibrator), reverse flow, pulse jet

- use of cleaning ring

(3) Liquid filtration See http://www.membranes.nist.gov/ACSchapter/pellePAGE.html

* Classification of liquid filtration The Membrane Spectrum

Dialysis ton exchange Filtration Pervap Microfiltration Ultrafiltration NF **RO** colloids very fine particles Gas , , , , , , , , त । । । । । । । । ,,,,,,,,,, ,,,,,,,,,, ┯┯╪┯┯ $100 \,\mu m$ $1A$ 1 m 10 nm 100 nm $1 \mu m$ $10 \mu m$ Staphylococcus H_2O Sucrose Virus 2 Å ~1 nm \sim 1 μ m y-globulin ${\sim}50~\mathrm{nm}$ $~10~{\rm nm}$ \circ \circ \circ \circ \odot Na abumin ~3.5 nm Hemoglobin Pseudomonas 3.7_A $~\sim$ 7 nm Starch \sim 0.35 µm ${\sim}10~\mu{\rm m}$ Gas | Tonic | Molecular | Macro Molecular | Micro **Macro**

(UF - ultrafiltration, MF microfiltration, NF - nanofiltration, RO - reverse osmosis. GS - gas and vapor separation)

Pore Characteristics

process	pore size [nm]	materials retained	materials passed	pressure [bar]
МF	> 50	particles (bacteria, yeasts etc)	water, salts macromolecules	< 2
UF	$1 - 100$	macromolecules, colloids, latices solutes $M_{\rm{uv}}$ > 10,000	water, salts, sugars	1 - 10
NF	≈ 1	solutes $M_{\rm{uv}}$ > 500, di- and multivalent ions	water, sugars, monovalent ions	$5 - 20$
RO	not relevant	all dissolved and suspended solutes (salts, sugars)	water	15 - 80

Table . Comparison of pressure-driven liquid (aqueous) phase membrane processes

* Permeation rate and pressure drop across filter membrane
 $V - \frac{(\Delta p - \Delta \Pi)}{V}$ where \prod : osmotic pressure R_{m} + $R_{c}(t)$ $V = \frac{(\Delta p)}{n}$ $R_m + R_c$ $=\frac{(\Delta p - \Delta \Pi)}{(\Delta p - \Delta \Pi)^2}$

- Constant- pressure operation

- Constant-flow rate operation

* Clean-up by back-flushing

* Equipments

Epoxy sheet

8.4 Separation by Nonequilibrium Gas

- (1) Thermal precipitators
- Collection efficiency for particles having $d_p\langle 5-10 \mu m=1$ $_{p}$ (5 – 10 μ m =
- Used in lab-scale particle collection for electron microscopes
- *Volumetric flow rate* \sim 4-5cm³/min
- $\Delta T = 50 200K$ with 1000-10000K/cm
- * Wire-and-plate form
- Used for dust collection for British mines
- 0.25mm Nichrome wire
- Temperature gradient: 8000K/cm
- Gas flow rate: 7.2cm 3/min

Electron avalanche

* Positive corona vs. negative corona

*Diffusion charging vs. field charging

*Two-zone ESP

Collection Efficiency

$$
G(d_p) = 1 - \frac{n_{out}}{n_{in}} = 1 - \exp\left(\frac{PLU_e(d_p)}{Q}\right) = 1 - \exp\left(\frac{AU_e(d_p)}{Q}\right)
$$

where $U_e = \frac{qEC_c}{3\pi\mu d_p}$: electrical migration velocity
 A_c : cross sectional area of the ESP

P: Perimeter of the ESP wall (P=A/L)

Figure 2: Collection efficiency for an electrostatic precipitator as a function of particle size. The calculations have been made for a system with the following dimensions:

- \cdot Flow rate \vec{V} =3.0 m³/s
- \cdot Length of collection section $L=2.6$ m
- · Diameter of the collector tube d=1.6 m
- Corona current I=3.2 mA

Particles suitable for ESP collection

Electrical resistivity of particles ←e.g. Fly ash : $10^6 \sim 10^{11} \Omega \cdot m$ Carbon black : 10⁻⁵ $\Omega\cdot m$ A $V = iR = i\frac{\rho l}{A}$ =

 $-$ If ρ $\langle 10^2 \Omega \cdot m \rangle$: fast charge transfer to electrode \rightarrow reentrainment of particles \rightarrow $G\downarrow$ $-If \rho/2\times 10^8\Omega \cdot m$: slow charge transfer (charge: longer stay) \rightarrow reverse corona $\rightarrow G\downarrow$ \therefore Optimum ρ for ESP:

 $10^6 \Omega \cdot m \langle \rho \langle 10^8 \Omega \cdot m$

* ESP vs. fabric filter system