
Part V. Functional Polymers for Energy Applications

Outline of Part

Secondary Battery

- Introductions for Secondary Battery
- Li Polymer Battery

전지의 종류

생물전지 효소전지, 미생물전지, 생물태양전지

화학전지의 특성비교

◆ Lead-acid: 1860년경부터 개발되어 현재 자동차의 기초 전원으로 이용됨. 싼 값으로 제조 가능하며 넓은 온도조건에서 고출력을 냄.

◆ Ni-Cd : 1899년에 발명.

철도 차량용, 비행기 엔진, 시동용 등에 사용 전동공구 및 휴대 가전제품의 전원으로 이용

◆ Ni-MH : 1970년경에 등장해 휴대형 전자 제품에 적용됨.

급속 충/방전 가능하고 저온 특성이 우수.

밀폐화가 가능하여 과충전 및 과방전에 강함.

공해물질이 거의 없음.

◆ Li-ion : 1990년대에 등장.

높은 에너지 저장 밀도와 저중량.

고가의 휴대형 전자 제품으로 용도 제한. 안전성면에서는 특별한 보호회로에 의존.

성능과 안전성 개선 노력 필요.

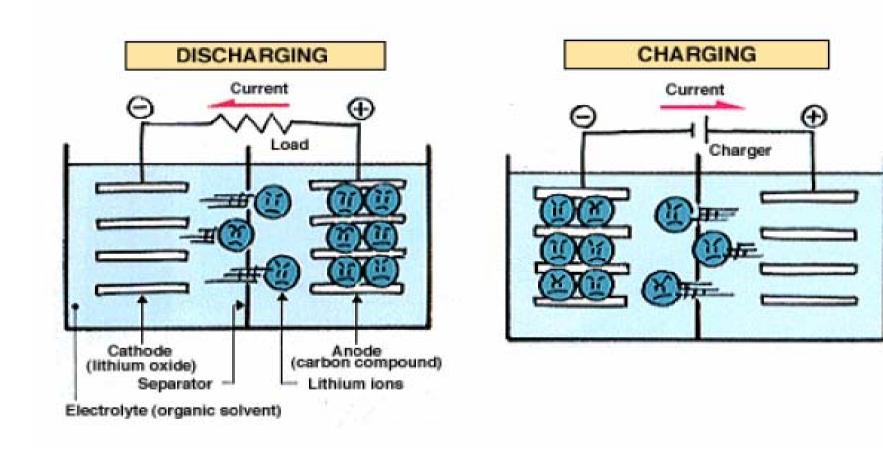
화학전지의 특성비교

구: 항목	분 니켈카드뮴 (Nicd)전지	니켈수소 (NiMH)전지	리튬이온 (Li-Ion)전지
Cell 표준 전압	1.2V	1.2V	3.7V
최대충전전압	1.5V	1.6V	4.2V
충전온도변화 *1	7℃	15℃	5℃
메모리효과 *2	매우 큼	보통	전혀 없음
충전 제어방식	☑ V검출 *3 VCO *5 Timer TCO *6	T/dt *4 VCO *5 Timer TCO *6	전류 낙차검출
재 충 전 조 건	완전 방전 후 충전 메모리효과에 의해 만충전에 문제 있음	0.2C이상 6시간이내 충전전류필요	조건 제한 없음
규격상의 수 명	300회 60%	300회 60%	300회 60%
실 제 수 명	300회 이하	300회 이상	600회 이상
보 관 수 명	1년	6개월	5년 이상

Li 2차 전지의 필요성

전지 성능 평가항

- energy density (Wh/l)
 250 Wh/l로 표시되는 용량밀도로 얼마나 작 게 만들 수 있는가에 대한 척도.
- specific energy (Wh/Kg)
 Wh/Kg 으로 표시되며, 얼마나 가벼운 전지를 만들 수 있는가에 대한 척도.
- cycle life: 용량이 초기용량의 60 % 로 줄 어들었을 때까지의 충방전 회수.
- 작동 온도구간 : -20 C~+60 C에서의 출 방전 효율
- 자가방전 : retention capacity와 recovered capacity


- Faraday's Law 1g에서 얻을 수 있는 전기용량(Ah): 96487C/3600=26.80Ah
- Cd의 이론용량 : 26.80Ah/56.2g=477mAh/gCd (Cd: 원자량 112.4, 원자가 2)
- Li의 이론용량 : 26.80Ah/6.941gLi=3861mAh/gLi (Li: 원자량 6.941, 원자가 1)

Li 2차 전지의 구성

- 양극 (cathode): 외부 도선으로부 터 전자를 받아 양극 활물질이 환원.
- 음극 (anode): 음극 활물질이 산 화되면서 도선으로 전자를 방출.
- 전해질 (electrolyte): 양극의 환 원 반응, 음극의 산화반응이 화학적 조화를 이루도록 물질이동이 일어나 는 medium.
- 분리막 (separator) :양극과 음극 의 물리적 접촉 방지를 위한 격리막.

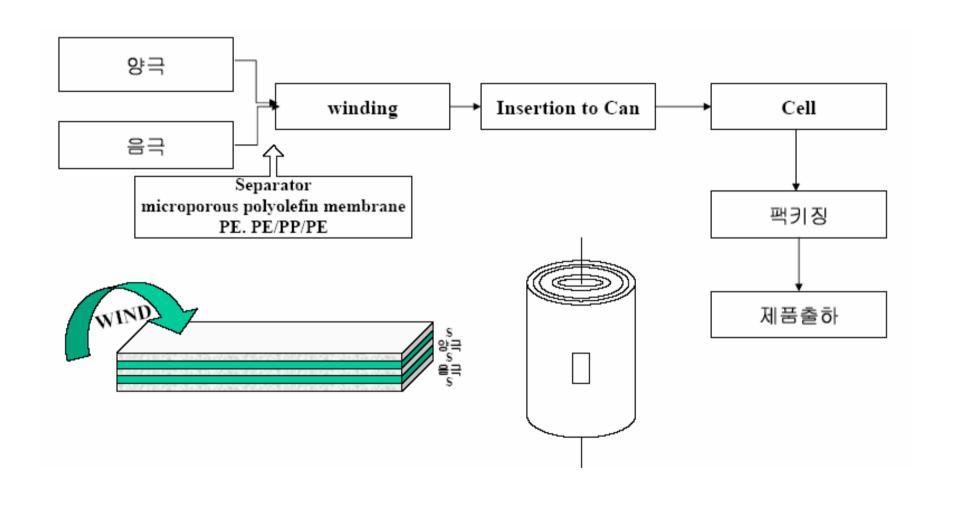
- 양극: 리튬 전이 금속 산화물 사용.
 LiCoO₂, LiMn₂O₄, LiNiO₂, LiV₂O₄
- 음극 : Active Carbon, Carbon fiber, Li 금속 사용.
- 전해질: 고유전전해액에 Li염이 녹은 용액. 전해액= EC, PC, DEC, DMC Li염= LiPF₆
- 분리막: Microporous polyolefin membrane. PE, PE/PP/PE

Li 이온전지의 충방전의 원리

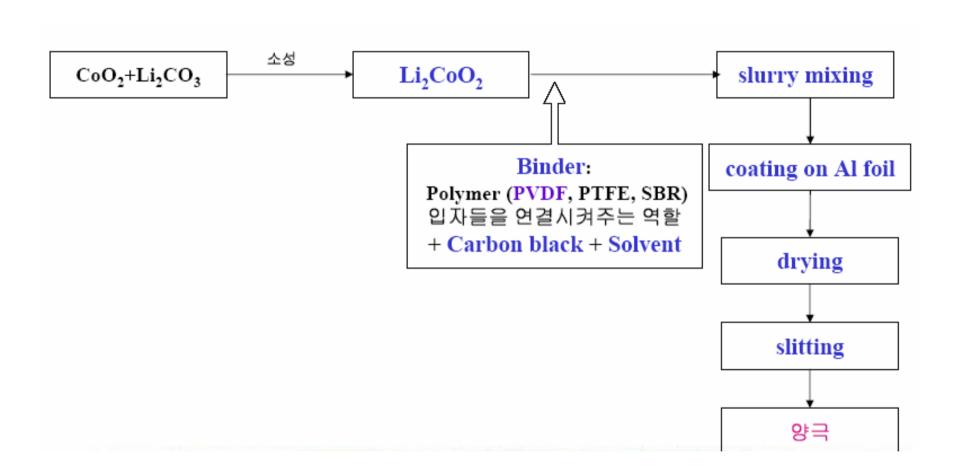
전해액

Ethylene Carbonate (EC)

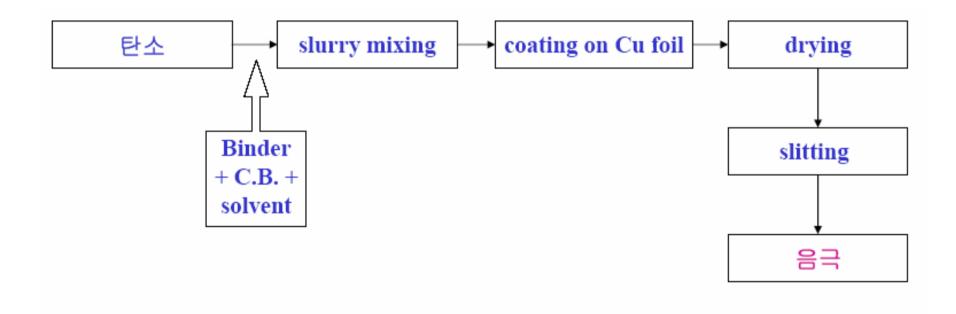
Propylene Carbonate (PC)


Dimethyl Carbonate (DMC)

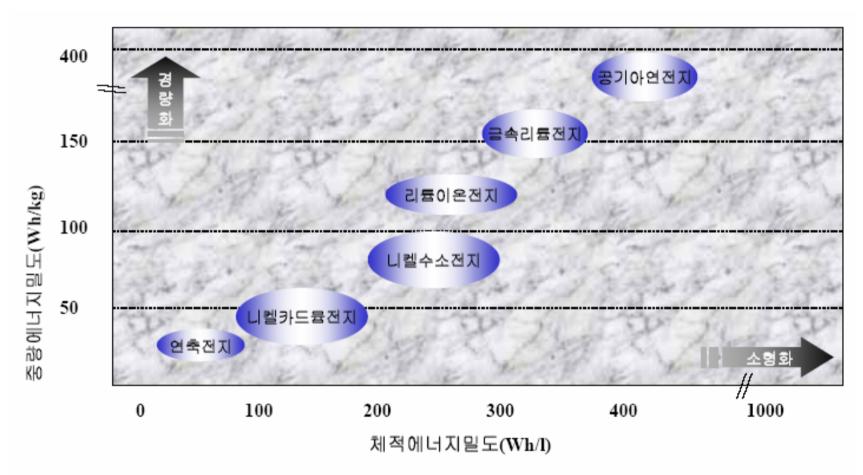
Diethyl Carbonate (DEC)


전해액의 물리적 특성

Solvent	M.W.	m.p.	b.p.	Viscosity (cp)	Dielectric Constant	d (g/cm ³)
EC	88.1	39.2	248.0	1.9	89.6	1.32
PC	102.3	-49.2	241.7	2.53	64.9	1.32
DMC	90.1	2.4	90.3	0.63	3.1	1.10
DEC	118.1	-43.0	126.0	0.75	2.8	0.97
γ-BL	86.1	-42.0	206.0	1.75	39.1	1.10


Li 2차전지의 제조 공정


양극 제조 과정


음극제조 과정

구조

2차 전지 개발동향

자료 : NIKKEI ELECTRONICS, 1998.10.5

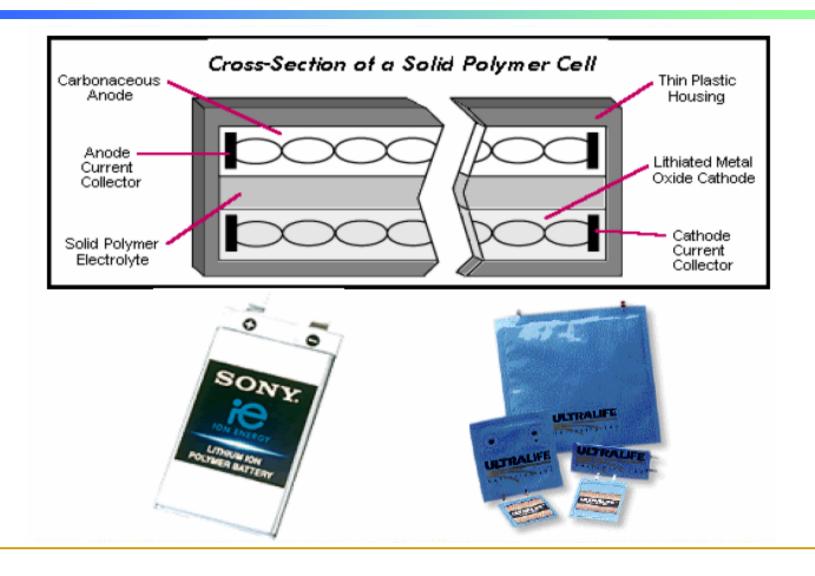
Li Polymer 전지

Comparison

Li-ion 전지

- <u>장점</u>
 고용량, 경량
- 단점

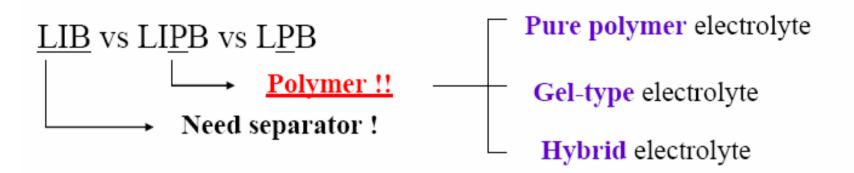
 누액 가능성으로 인한 안정성 문제


 전지의 성능을 유지하고 safety 를

 유지하기 위하여 타전지에서는

 사용하지 않는 보호회로를 사용

Li-폴리머 전지


Li Polymer 전지

Li계 2차전지의 비교

	Cathode	Electrolyte	Anode	_
LMB	LICoO ₂ , LiMn ₂ O ₄ , LiNiO ₂	액체 유기전해액 (리튬염 용해)	리튬금속	안정성 문제
LIB	LICoO ₂ , LiMn ₂ O ₄ , LiNiO ₂	액체 유기전해액 (리튬염 용해)	탄소 (흑연)	현재 Lii전지 주 력품목
LIPB	LICoO ₂ , LiMn ₂ O ₄ , LiNiO ₂	고체 고분자 전해질 (전해액 함침)	탄소 (흑연)	시제품
LPB	LICoO ₂ , LiMn ₂ O ₄ , LiNiO ₂	고체 고분자 전해질	리튬금속	연구개발중

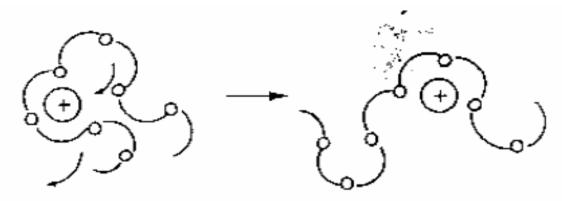
LIB vs LIPB vs LPB

- 1) Ion conductivity 10-3 S/cm
- 2) Film casting ability & mechanical property
- 3) Electrochemical stability (up to ~4.5V)
- 4) Endurance on Cycle Test

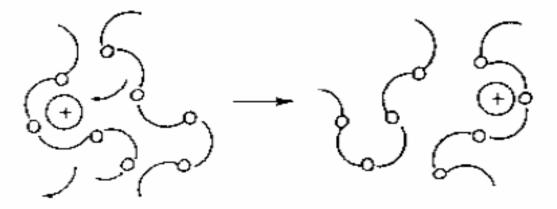
전해질에 요구되는 특성

- 1. 10⁻³ S/cm 이상의 이온전도도 σ=nqμ where n=carrier ion수, q=전하량, μ=이동도(mobility) σ(S/cm)=t/R*A where t=두께, R=저항, A=면적
- 2. 경량화를 위한 얇은 두께
- 3. 전극과의 계면 문제: dendrite 형성이 없어야 함
- 4. 전기화학적 안정성 (전지 작동 전압 내에서 안정한 산화•환원)
- 5. Cycle 특성: 저온, 고온에서의 안정성 포함 (100°C까지)
- 6. 기계적물성 (분리막 handling시 점착성과 적층시 압력에 견딤성)
- 7. 가격 경쟁력
- 8. 생산성

전해질의 종류


1. 액체 전해질

- 장점 높은 이온전도도
- 단점 누액가능성, 제조비용의 고가, 고가의 분리막을 사용해야 함, 대형 전지로 적용이 어려움


2. 순수고분자 전해질

- 장점 안정성, 박막가공 가능, 유연성, 연속 작업성 향상
 - 낮은 Tg와 O, N, S과 같은 전자를 줄수 있는 원소 포함 고분자 + 리튬염 (PEO, PPO, polysiloxane, polyphosphazene... + LiAsF₆,LiClO₄ ...)
 - 리튬염과 배위결합 후 main chain의 segmental motion에 의한 이온 전도
- 단점 PEO 경우 높은 결정화로 인한 낮은 전도도 (10-8~10-5 S/cm) 결정화 감소를 위한 copolymer, graft, crosslinking

PEO 전해질에서 Li 이온의 이동

Intrachain hopping

Interchain hopping

(a)

Gel형 전해질

3. 겔형(가소화된) 고분자 전해질

- 고분자 + (가소제) + 전해액 + 리튬염
- 상온에서 10⁻³ S/cm: 액체 전해질과 유사
- 고분자 = 전해질 지지체 = PAN, PMMA, PVdF, PVC
 PAN 높은 이온전도도, 나쁜 기계적 물성
 PMMA 좋은 기계적 물성, too stiff, 나쁜 계면성질
 PVdF 높은 전도도, 좋은 기계적 물성, 가격이 비쌈
- 가소제 = DBP = 전해액 주입 전 추출 in Bellcore technology
- 유기용매 = EC, PC, DMC, DEC...
 저점도, 높은 유전상수, 전기화학적 안정성, 낮은 mp, 높은 bp,
 용매와 고분자와의 상용성, 낮은 증발열

Polymers for LIB

$$\begin{array}{c|c} - \left[H_2 C - C \\ \hline \\ C \\ C N \end{array} \right] \begin{array}{c} n \\ \end{array}$$

Polyacrylonitrile (PAN)

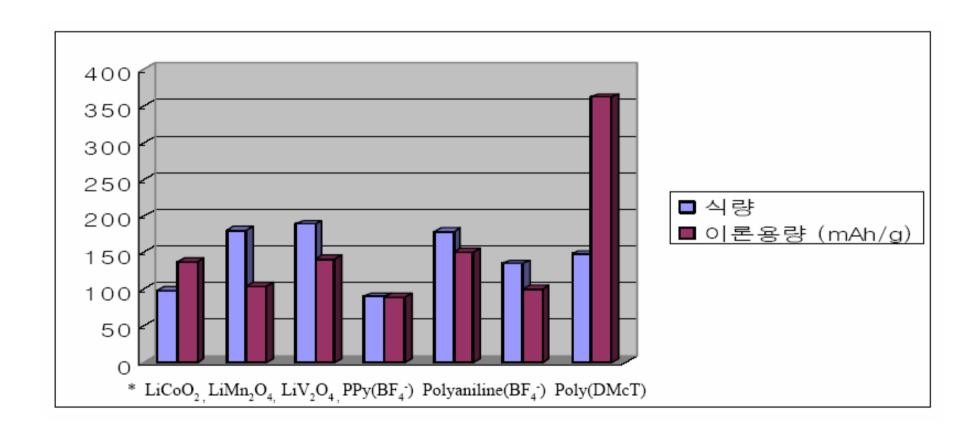
$$H_2C$$
 CH_3
 $C=0$
 $C=0$
 $C=0$
 CH_3

Poly(methyl methacrylate) (PMMA)

$$\begin{array}{c|c} - & H \\ \hline H_2C - C \\ \hline CI \\ \end{array}$$

Poly(vinyl cloride) (PVC)

Poly(vinylidene fluoride-co-hexa fluoro propylene)) P(VdF-co-HFP)


대표적인 겔형 전해질의 이온전도도

Electrolytes	Conductivity at 20°C (S/cm)
21 PAN-38 EC / 33 PC - 8 LiAsF ₆	2.1×10 ⁻⁸
37 PVdF - 30 EC / 30 PC - 3 LiN(CF ₃ SO ₂) ₂	1.5×10 ⁻⁸
17 PVC – 24 EC / 14 PC – 12 Trigyme-3 LiClO ₄	1.1×10 ⁻⁸
37 PVC – 30 PC / 30 SL – 3 LiAsF ₆	1.5×10 ⁻⁸
24 PAN – 38 EC / 33 PC – 5 LiPF ₆	1.7×10 ⁻⁸
21 PAN - 40 EC / 35 PC - 3 LiN(CF ₃ SO ₂) ₂	1.5×10 ⁻⁸

Ion Conductivity

개발자	고분자	리튬염	전해액	이온 전도도	비고
Hydro-Quebec (Can)	Ethylene oxide copolymer	LiClO ₄		3×10 ⁻³	
Valence (Am)	Ethylene oxide-acrylate	LiAsF ₆	EC/PC	~4×10 ⁻³	
EIC Lab. (Can)	Polyacrylonitrile	LiClO ₄	EC/PC	1.7×10 ⁻³	
SRI (Am)	Siloxane 계 polyelectrolyte		PC	5×10 ⁻⁴	
Telcordia (Am)	Vinylidene fluoride계 copolymer	LiPF ₆	EC 주종	1×10 ⁻³	Bellcore
Gould (Am)	Poly(ethylene oxide)	LiC1O ₄	EC/PC	2×10 ⁻³	
Battery Eng. (Am) Hitachi Maxell (JPN)	2-ethoxyethylacrylate+ethylenegylcol ethyl carbonate methacrylate+tri(ethylene glycol)dimethylacrylate	LiPF ₆	EC/PC	2×10 ⁻³	
Sony (JPN)	Polyacrylonitrile	LiPF ₆	EC/PC/Y-BL	4×10 ⁻³	
Asahi Kasei (JPN)	Poly(vinylidene fluoride- hexafluoropropylene)	LiBF ₄	EC/PC	1×10 ⁻³	
Toshiba (JPN)	Poly(vinylidene fluoride- hexafluoropropylene)	LiBF ₄	DMC/ sulfolane	9.6×10 ⁻³	

여러가지 Cathod의 이론용량

