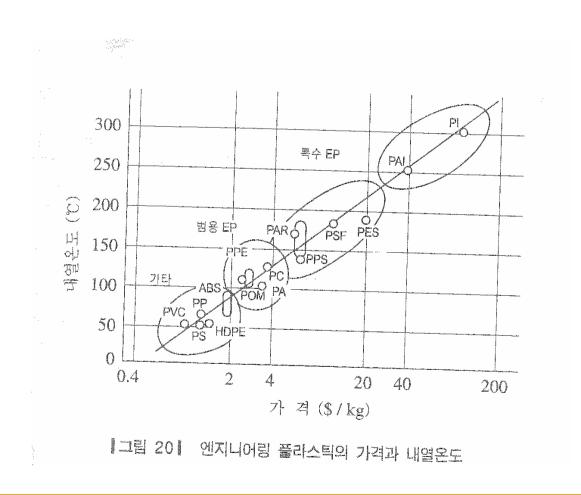


2주차. 내열성 고분자

Outline of Chapter

EP & Super Engineering Plastics

- Polytetrafluoroethylene (PTFE)
- Polyimide (PI), Polyamide Imide (PAI)
- Polysulfone (PSF)
- Polyphenylene sulfide (PPS)
- Polyetherether Ketone (PEEK), Polyether Ketone (PEK)



History of EP

생산시기	고분자	개발회사
1939	Nylon 66	Du pont
1949	Poly(ethylene terephthalate)	ICI
1950	Polytetrafluoroethylene	Dupont
1958	Polycarbonate	Bayer
1959	Polyacetal	Du pont
1964	Polyimide	Du pont
1964	Poly(phenylene oxide)	General Electric
1966	Polysulfone	Union Carbide
1966	Modified PPO	General Electric
1968	Poly(phenylene sulfide)	Philips
1971	Poly(butylene terephthalate)	Celanese
1971	Poly(amide imide)	Amoco
1972	Poly(ether sulfone)	ICI
1980	Poly(ether ether ketone)	ICI
1982	Poly(ether imide)	General Electric

EP cost vs. 내열온도

폴리아미드 (Polyamide)

중합방식	폴리아미드	구 조 식	원 료
카프로락탐의 고리 열림중합	나일론 6	-(-NH-(-CH ₂) ₅ -CO-) _n -	ο ε-caprolactam
아미노 카르복시 중축합	나일론 11	-(-NH-(-CH ₂) ₁₀ -CO-) _n -	H_2 N-(-C H_2) ₁₀ -COOH ω –aminoundecanic acid
아미노 카르복시 중축합	나일론 12	-(-NH-(-CH ₂) ₁₁ -CO-) _n -	H_2N - $(-CH_2)_{11}$ - $COOH$ ω –aminododecanic acid
디아민과 디카르복시의 중축합	나일론 66	-(-NH-(-CH ₂) ₅ -NHCO-(-CH ₂) ₄ -CO) _n -	H ₂ N-(-CH ₂) ₆ -NH ₂ HOOC-(-CH ₂) ₄ -COOH
	나일론 610	-(-NH-(-CH ₂) ₅ -NHCO-(-CH ₂) ₈ -CO) _n -	H ₂ N-(-CH ₂) ₆ -NH ₂ HOOC-(-CH ₂) ₈ -COOH

Nylon 66

nylon 6,6

- H.W. Carother 최초합성, Dupont사 상업화
- 0.1-1mol %의 아세트산 수용액을 점도안정제로 사용하여 17atm, 270-280°C에서 용융 중축합 공정으로 제조

Nylon 6

- Nylon 전체생산량의 60%를 차지함.
- 5-10 mol %의 아세트산 수용액을 점도안정제로 사용하여 80°C 에서 고리열림 (Ring opening) 중합 공정으로 제조

Aramide Fiber

para-phenylene diamine

In Kevlar the aromatic groups are all linked into the backbone chain through the 1 and 4 positions. This is called para linkage.

In Nomex the aromatic groups are all linked into the backbone chain through the 1 and 3 positions. This is called *meta* linkage.

Application

구분	구성비 (%)	원 료	
자동차	59	Engine beauty cover, Inside door handle Gear shift housing, Wheel center cap, Lamp housing	
전기전자	15	밥통테, 스위치, 전동공구 housing, 전기밥솥 Top & Lower cover	
기타	26	수도꼭지 레버, 유모차 부품, 낚시대 부품	

Polycarbonate (PC)

$$HO \longrightarrow CH_3 \longrightarrow CH$$

bisphenol A

$$Na^+O^ CH_3$$
 CH_3
 O^-Na^+

sodium salt of bisphenol A

2 step

$$Na^+O^ CH_3$$
 CI^-CCI
 CI^-CCI
 CI^-CCI
 CI^-CCI
 CI^-CCI

$$\longrightarrow$$
 $+0-\overset{O}{\leftarrow}-0-\overset{CH_3}{\longleftarrow}\overset{CH_3}{\longleftarrow}\overset{+}{\longrightarrow}$

Non-phosgen 법도 있다!

+ (n - 1) NaCl

PC의 특징과 용도

- 1950년대 후반 Bayer(독) & GE(미국) 상업화
- 투명도 (가시광선 투과율 80-90%), 내충격성이 매우 뛰어나다, 내후성이 뛰어나 옥외용으로도 많이 사용됨
- 사용온도 범위: 40-120°C.

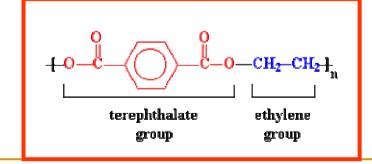
구분	구성비 (%)	원 료	
자동차	14	Bumper 및 외장제품, 미터기판, 히터 판 휠커버, Lamp lense, 광섬유, 램프 홀더, 램프커버	
전기전자	37	전동공구 하우징, 캠팩트디스크, 단자판	
기계	24	쌍안경 보디, 카메라 보디, 현미경 부품, 영사기 부품	
기타	25	헬멧, 소화기 부품, 보온병, 수유병, 수족관	

Polyester (PET, PBT)

dimethyl terephthalate

bis-(2-hydroxyethyl)terephthalate

+ 2 CH₃OH methanol


Polyester (PET, PBT)

For PBT: HO-CH₂-CH₂-CH₂-CH₂-OH

$$-1-O-C$$
 + 2 HO-CH₂-CH₂-OH

ethylene glycol

poly(ethylene terepthalate)

Polyester의 특징과 용도

- 1949년 ICI(영): PET 상업화, 1971년 Celanese: PBT 상업화
- 장기 사용온도 범위: ~140°C.
- 내 화학성, 내후성, 전기적 특성이 뛰어나다.

구분	구성비 (%)	원 료	
자동차	15	커넥터 부품, 퓨즈박스, 도어 핸들, 모터 하우징, 헤드램프 와이퍼	
전기전자	73	스위치 부품, 커넥터 부품, 전원 콘센트, 젠자레인지 door latch, 온풍기 그릴	
기타	12	형광등 소켓	

Polyacetal (POM)

구 분	Copolymer	Homopolymer
분자구조	HO H H H O H	$CH_3 \stackrel{H}{\longrightarrow} O \stackrel{H}{\longrightarrow} O \stackrel{H}{\longrightarrow} O \stackrel{H}{\longrightarrow} O \stackrel{W}{\longrightarrow} O$
제조공정	<pre> <i colspan="2"><i colspan="2"></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></pre>	

촉매 Tert-butylamine하에서 이온중합

POM의 특징과 용도

- 1960년 Dupont(미): POM (Derlin) 상업화
- 결정화도가 75-85% 정도로 매우 높다.
- 내용제성, 내유성이 뛰어나다.
- 내후성이 좋지 않아 옥외용으로 사용이 좋지 않다.

구분	구성비 (%)	원 료
자동차	32	스피커 그릴, 인사이드 도어 핸들, 안전벨트 부품, 사이드 미러 부품, 연료펌프 부품, 오토미션 부품
전기전자	28	세탁기 니플, 세탁기 배수구 부품, VTR 기어, 핸드폰 부품, 젠자레인지 부품,
기타	40	지퍼, 장난감 기어류, 의자용 부품, 밸브류, 블라인더 부품

Polyphenyleneoxide (PPO)

2, 6 -xylenol

PPO

PPO의 특징과 용도

- 1959년 GE(미):PPO 상업화
- 단독으로는 가공성이 좋지않아 항상 styrene 성분으로 개질한 mPPO 형태로 사용한다 (Noryl).
- 내 열수성, 내알카리성이 뛰어나다.
- 전기적 특성이 뛰어나며, 특히 유전상수가 낮다.

구분	구성비 (%)	원 료
자동차	10	내 외장재 부품 (훨 캡)
전기전자	76	카메라 스위치 부품, 오버헤드, 프로젝트 팬, 팩시밀리 부품, 랩탑 하우징, 스위치 케이스
기타	14	펌프 커버, 테니스 라켓

History of EP

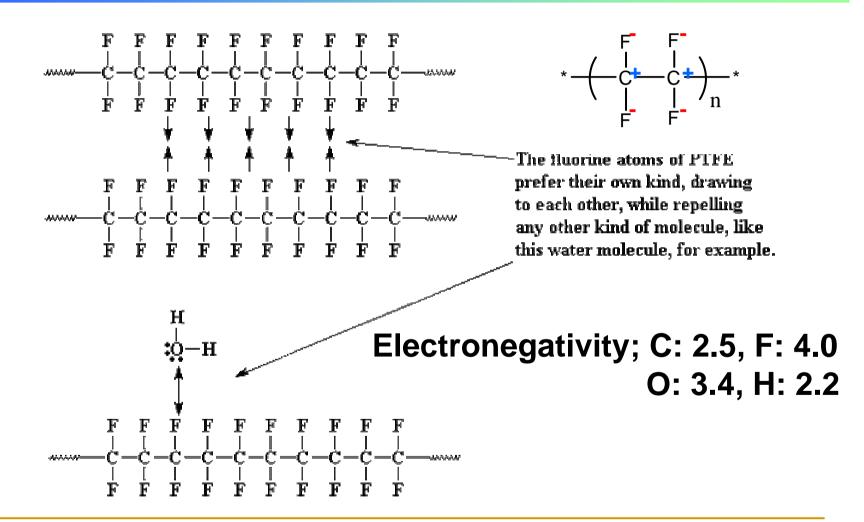
생산시기	고분자	개발회사
1939	Nylon 66	Du pont
1949	Poly(ethylene terephthalate)	ICI
1950	Polytetrafluoroethylene	Dupont
1958	Polycarbonate	Bayer
1959	Polyacetal	Du pont
1964	Polyimide	Du pont
1964	Poly(phenylene oxide)	General Electric
1966	Polysulfone	Union Carbide
1966	Modified PPO	General Electric
1968	Poly(phenylene sulfide)	Philips
1971	Poly(butylene terephthalate)	Celanese
1971	Poly(amide imide)	Amoco
1972	Poly(ether sulfone)	ICI
1980	Poly(ether ether ketone)	ICI
1982	Poly(ether imide)	General Electric

Polytetrafluoroethylene (PTFE)

의 제법 및 구조

$$C = C$$
 F
 $C = C$
 C
 C

tetrafluoroethylene


polytetrafluoroethylene

PTFE 이야기

- 과학에서는 우연히 발명된 것들이 많이 있는데 PTFE도 그 중 하나입니다. 1930연대 말 Du Pont 사에서 PTFE를 발명하였을 때만 하여도 이것을 후라이 팬이나 인공 심장 밸브 등에 사용하는 것은 고려도 하지 않았습니다. 냉장고에 사용하려고 했습니다. 그 당시 암모니아나 이산화 황과 같은 것을 냉장고의 냉매로 사용하였습니다. 이런 것들이 세어나와 여러분의 부엌에 퍼지면 어떻게 되겠습니까? 그래서 무독성 냉매를 찾게 된 거죠. 이 때 조사 대상이었던 것이 사불화에틸렌 (tetrafluoroethylene)이었습니다.
- DuPont에서 일하던 화학자인 Roy Plunkett도 이 연구에 참여하였습니다. 그는 한때 Paul Flory와 룸메이트이기도 하였습니다. 어느날 Roy Plunkett가 새로 산 tetrafluoroethylene가스통을 열었을 때 가스가 나오지 않았습니다. 그래서 무게를 달아 보았죠. 가득 찬 것이 분명했습니다. 그래서 탱크를 깨서 보니 가스대신에 하얀 분말로 가득 차 있었습니다. 이 분말이 가스통에서 자연 중합된 PTFE인 것입니다.

PTFE의 분자구조 고찰

PTFE의 특징 및 용도

- 고 결정성 고분자
- 유리전이온도: -73°C, 융점: 335°C
- 주요용도: 부착방지용 표면 코팅

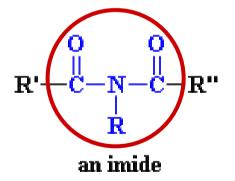
(후라이판, 인공심장 밸브 코팅)

Polyimide (PI)의 제법

$$+$$
 H_2N NH_2

Pyromellitic Dianhydride (PMDA)

Diamine

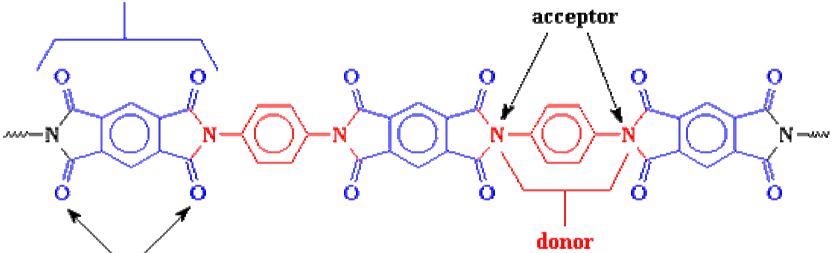


PI의 구조

$$+ \sum_{O}^{H_3C} C C H_3$$

$$- \sum_{O}^{H_3C} C C H_3$$

$$- \sum_{O}^{N} C C C H_3$$

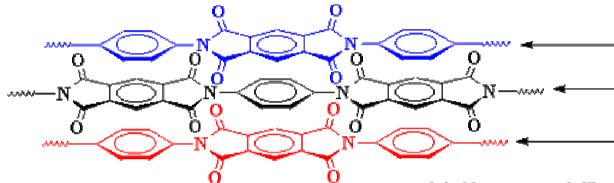

$$\left\langle \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rangle_{\mathbf{n}}$$

$$-\left\langle \mathbf{R}-\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\bullet}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}}}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}}{\overset{\bullet}}{\overset{\bullet}}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}{\overset{\overset{\bullet}}}{\overset{\bullet}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}{\overset{\overset{\bullet}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}{\overset{\overset{\bullet}}{\overset{}}}}{\overset{\overset{\bullet}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}}{\overset{\overset{\bullet}}{\overset{\overset{\bullet}}}}{\overset{\overset{\bullet}}}}}{\overset{\overset{\bullet}}}}{\overset{\overset{\bullet}}{\overset{\overset{\bullet}}{\overset{\bullet}}}}}{\overset{$$

linear polyimide

PI의 분자구조 고찰

nitrogen atoms have a higher electron density than the carbonyl groups and lend it to the



carbonyl groups suck electron density away from the acceptor unit

acceptor

PI의 상호결합

polyimides may stack like this allowing the carbonyls of the acceptor on one chain to interact with the nitrogens of the donor on adjacent chains.

This bisphenol-A linkage and these two ether linkages lend flexability to the polyimide.

PI의 특성

- Du pont에서 NASA의 요청으로 개발한 고분자
- 상품명: VESPEL, KAPTON (film)
- 초내열성 고분자
- 유리전이 온도: 410°C, 분해온도: 480°C

PI의 용도

- 성형품 사진기 부품, 반도체용 실험용 소켓, 전자레인지 회전 부품
- 필름 자동차 및 공업용 모터부품, 반도체 IC의 기판
- 복합체 NASA의 궤도비행체, 다층배선 층간 절연막

Polyamide Imide (PAI)의 제법

$$+ H_2N - R - NH_2 \rightarrow \begin{bmatrix} H_2N - R - NH_2 \\ H_2N - R - NH_2 \end{bmatrix}_n$$
Trimellitic acid anhydride

Trimellitic acid anhydride

PAI의 특성

- Amoco에서 개발한 고분자
- 상품명: Torlon
- 내열성 고분자 HDT: 274℃
- 전기특성이 PA, PC, PPO보다 우수
- 고 내충격강도, 내마찰, 내마모성이 우수

PAI의 용도

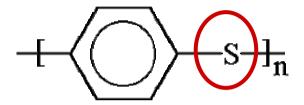
- 복사기 부품
- 전기전자기기 (항공, 우주관계의 컨넥터, IC 소켓)

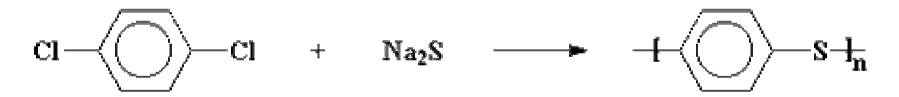
Polysulfone (PSF)의 제법 및 구조

• Bisphenol A와 dichlorodiphenyl sulfone의 polycondensation

Polysulfone의 특성

- UCC에서 개발한 호백색의 투명한 비결정 수지
- 내열성, 내충격성, 치수안정성, 내수성이 우수
- -100ºC 150ºC까지 우수한 강도 유지
- 유리전이 온도: 190°C, <u>HDT@18.6kg/cm²</u>: 175°
- 장기사용온도: **150**℃
- 내산, 내알카리 특성, 내 가수분해성을 지니고 있어 고온 식품용기에 사용




Polysulfone의 용도

- 전기 전자 및 정밀기기 부품
- 자동차 및 항공기 우주선 관계 부품
- 식품산업기기 및 의료기기

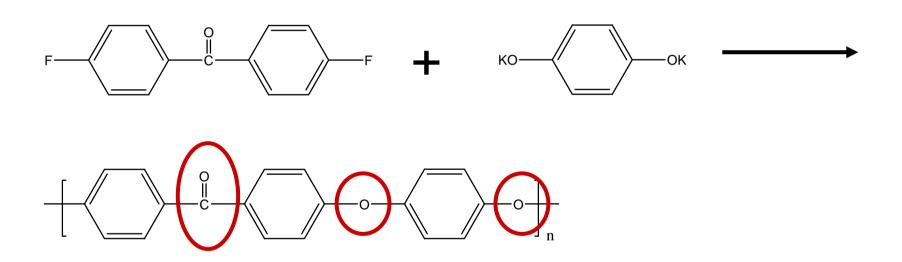
Polyphenylene sulfide (PPS)의 제법

p-dichlorobenzene

sodium sulfide

polyphenylene sulfide

• N-methyl pyrrolidone 용제하에서 반응



PPS의 특성 및 용도

- Philips에서 개발한 고분자
- 내열성 고분자 : 300°C
- 자동차, 전자 오븐, 헤어 드라이어
- 저분자량의 PPS가 얻어지는데 코팅용

Polyetherether Ketone (PEEK)의 제법

Polyether Ketone (PEK)의 제법

PEK, PEEK의 특성

- ICI에서 개발한 결정성 고분자
- 상품명: VICTREX, KADEL (AMOCO)
- 유리전이온도: 162°C, 녹는점: 334~373°C
- 내열성 고분자 (GF 30%) HDT: 310~360°C
- 내약품성이 매우 우수 (50% 황산에 내성)
- 고 내 충격강도, 우수한 내 피로특성

PEK, PEEK의 용도

- 전선 및 케이블의 절연 피복
- 열수펌프의 Housing, 내열패킹
- 복합재료

