

Part III. Functional Polymers for Semiconductor Applications

p. **Outline of Part**

Photoresist for Semiconductor Applications

 \Box Introduction of photolithography

□ Photoresist Materials

for Exposure at 193 nm Wavelength

□ Chemically Amplified Resists for F2 Excimer laser Lithography

Photoresist Materials for Exposure at 193 nm Wavelength

128 Mbyte SDRAM

Design of Chemically Amplified Resist

Requirements of 193-nm Photoresists

1. **Transparency at 193 nm** (Transmittance > 0.6 / µm)

2. **Good Dry-Etching Resistance**

- Pattern formation with high aspect ratio (~ Novolac resist)

3. **High Thermal Stability**

-Stable to temperature in process environments(T_d > 150°C, T_g > 100°C)

4. **Good Adhesion to Substrate**

5. **High Sensitivity**

- Dose < 20 mJ/cm2

6. **Compatibility with Conventional Developer (0.262 N TMAH)**

Target Point

Synthesis of photoresists materials that have

- -Good mechanical and thermal properties
- -High transparency at 193 nm wavelength
- Good etch resistance
- -Capability of resolving sub-0.25µm feature size

193 nm Resist Materials

Challenges :

Conventional resists are unsuitable for 193 nmimaging due to their opacity at this wavelength.

Comparison of Absorption Spectra (PHS vs. PMMA)

193 nm Resist Materials

Challenges :

Etch resistance has been empirically linked to a high carbon/hydrogen ratio, but aromatics are precluded because of their absorption at this wavelength.

Gokan, H.; Esho, S.; Ohnishi, Y. *J. Electrochem. Soc*. **1983**, *130*, 143

Dry Etch Resistance of Organic Materials

How Do it can be Achieve ?

"Optical Transparency"

&

"Etch Resistance"

The Need for Polymers with High C:H Ratios

- **Etch rate is inversely proportional to the carbon to hydrogen ratio of the polymer.**
- **This observation leads to polymers containing aromatic or cyclic structures.**

Typical Design Example

Tethering Function, Etch Resistance, Mechanical & Thermal Properties

Acid Lability **Base Solubility**

How About Alicyclic Compounds?

* No aromatic groups \rightarrow High transparency at 193 nm

* High Carbon/Hydrogen ratio \rightarrow Good etch resistance

Monomer Synthesis

Diels-Alder Reaction

3개의 **pi** 결합이 **2**개의 **sigma** 결합과 **1**개의 **pi** 결합으로 전환되었다**!!!**

Pathways to Polymerization

Addition Polymerization

- * Advantages
	- -High Thermal Stability
	- -Excellent Storage Stability
- * Disadvantages
	- Metal Contamination
	- Low Yield

ROMP (Ring Opening Metathesis Polymerization)

* Chain Polymerization Mechanism

* Driving Force is Release of Ring Strain

*** Example ***

Lithographic Performance of ROMP Polymers

* Advantages

- -Good transparency at 193nm
- -High yield and controllable MW

* Disadvantages

- -Synthetic cost
- -Phase separation with common PAGs
- -Very dilute developer concentration
- -Adhesion problem limit resolution

Radical Copolymerization

Improving Adhesion

Increasing polarity with MA to improve adhesion

<Problem>

- Poor etch resistance

Improving Etch Resistance

DBNC-MA copolymer

$\mathcal{L}_{\mathcal{A}}$ Enhancing etch resistance

Result (etch data)

	DBNC-alt-MA copolymer	BNC-alt-MA copolymer	APEX-E
Rate (A/min)	453	633	603
Relative Rate	0.76	1.05	1.00
APEX-E DBNC-alt-MA BNC-alt-MA $/\rm{x}$ $/\sqrt{v}$ 'n n ∩= $O =$ $O =$ Ω ÒН $O=$			

Takechi, S. Takahashi, M.; Kotachi, A.; Nozaki, K.; Yano, E.; Hanyu, I.; *J. Photopolym. Sci. Technol*., **1996**, 9(3), *475*.

Result (SEM)

100nm Lines

90nm Lines

80nm Lines

!!!

Mid-Summary

- 1. Addition Polymers
	- thermal and storage stability
	- metal contamination and low yield

2. ROMP Polymers

- excellent transparency and storage stability
- capable of resolving 0.25µm features
- require non-standard developer

3. Radical Polymers

- alternating copolymers
- capable of resolving 80 nm features
- exhibit etch resistance higher than conventional resists

Chemically Amplified Resists for F2 Excimer laser Lithography

- \checkmark Resolution : < 70 nm
- \checkmark Absorbance : < 2.0 /µm
- \checkmark Sensitivity : < 30 mJ/cm2

157 nm Photoresist

Problem of the Transparency

- \checkmark Solid state absorbance of photons in the 130 to 180 nm range (approximately 7 to 10 eV) is still dominated by valence band electronic transitions.
- \checkmark Many "common" chemical bonds are sufficiently absorptive to lead to efficient exicitation of the polymer matrix.
- \checkmark The 157 nm absorption is dominated by C(2p) electrons, whose absorption band edge is very close to 157 nm, and whose transition probability can be dramatically affected by the chemical bonding environment.

C-F bonds are transparent at 157 nm !

Photon absorption Characteristics of several ground state electrons

Absorption Coefficients at 157nm

Backbone of the 157 nm Photoresist

Problems of Materials

Hydrofluorocarbon Materials

- Difficulty with regard to aqueous base solubility
- Reduction of adhesion
- Difficulty of synthesis
- Incorporation of fluorine into a resist must be done only in limited fashion

Siloxane/ Silsesquioxane Materials

- Low T_g of siloxane
- Solubility of silsesquioxane

Etch Resistance

Protecting Group

Balancing photoresist properties at 157 nm

Approach to Design of Photoresist polymer

Patterson, *Proc*, SPIE **3999**, 365 (2000)

Siloxanes

 $CH₃$

4

 $Pt(II)$

One of our transparent norbornene or dinorbornene monomers, eg

 R_1

Substituent that imparts both transparency and high Tg characteristics, eg.

 $(\mathsf{T}_{\mathsf{g}}\mathsf{\sim} 90\, \mathrm{{}^\circ\!C})$

 $CH₃$

Śi−O−

 $-OR$

 \int ^{CF}₃ $\frac{1}{2}$ $\mathsf{or}\,$

Fluorinated, high ${\sf T_g}$ polysiloxane

Silsesquioxanes

Silsesquioxanes from commercially available hydridosilsesquioxane

Silsesquioxanes

A silsesquioxane copolymer (for better adhesion, higher Tg)

Synthesis of an acid-labile, transparent silsesquioxane

A silsesquioxane from protected allylhexafluoroalcohol

Dinorbornyl silsesquioxanes

Silsesquioxanes

Incorporation of polyhedral oligosilsesquioxane (POSS) in chemically amplified resists to improve their reactive ion etching resistance

- *Hengpeng Wu, M. J. Yacaman, J. Vac. Sci. Technol. B 19(3), 2001, 851-855*

Fig. SEM micrograph of polymers : Dose: 5 $\mu {\rm C/cm^2}$; feature dimension: 240 nm

Hydrofluorocarbon Resist

Schmaljohann, *Proc*, SPIE **3999**, 330 (2000)

THP-protected poly(vinyl alcohol-*co***-**^α**-trifluoromethyl vinyl alcohol)**

- **: 0.55** µ**m pattern (m/n = 55/45)**
- **: max. 70% protection with ATPB (cat.) instead of PTSA**

