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Part III. Functional Polymers for 
Semiconductor Applications

Outline of Part
Photoresist for Semiconductor Applications

Introduction of photolithography
Photoresist Materials 
for Exposure at 193 nm Wavelength
Chemically Amplified Resists 
for F2 Excimer laser Lithography
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Photoresist Materials 
for Exposure at 193 nm 
Wavelength

128 Mbyte SDRAM
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Design of Chemically Amplified Resist
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Requirements of 193-nm Photoresists

1. Transparency at 193 nm (Transmittance > 0.6 / µm)

2. Good Dry-Etching Resistance

- Pattern formation with high aspect ratio (~ Novolac resist)

3. High Thermal Stability

- Stable to temperature in process environments(Td > 150°C, Tg > 100°C)

4. Good Adhesion to Substrate

5. High Sensitivity 

- Dose < 20 mJ/cm2

6. Compatibility with Conventional Developer (0.262 N TMAH)
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Synthesis of Synthesis of photoresistsphotoresists materials that havematerials that have

- Good mechanical and thermal properties

- High transparency at 193 nm wavelength

- Good etch resistance 

- Capability of resolving sub-0.25µm feature size

Target Point
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Conventional  resists are unsuitable for 193 nm

imaging due to their opacity at this wavelength.

Challenges :

193 nm Resist Materials
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OH

n

PHS
(Poly(hydroxystyrene))

CO2CH3

n

PMMA
(Poly(methylmethacrylate))

Rai-Choudhury, P. Handbook of Microlithography, Micromachining, and Microfabrication, 
Vol.1, SPIE Engineering Press,1997

Comparison of Absorption Spectra
(PHS vs. PMMA)
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Etch resistance has been empirically linked to a high
carbon/hydrogen ratio, but aromatics are precluded
because of their absorption at this wavelength.

Gokan, H.; Esho, S.; Ohnishi, Y. J. Electrochem. Soc. 1983, 130, 143

Challenges :

Etch Rate
Ntotal

Ncarbon- Noxygen
∝

193 nm Resist Materials
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Ohnishi et.al. J.Electrochem. Soc.: Solid-State Sci. Technol., 130, 143 (1983)

n

PS
(Polystyrene)

CO2CH3

n

PMMA
(Poly(methylmethacrylate))

Dry Etch Resistance of Organic Materials



Prof. Jin-Heong Yim

“Optical Transparency”

&

“Etch Resistance”

How Do it can be Achieve ?
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Structure:

Formula:

C/H:               

• Etch rate is inversely proportional to the carbon to 
hydrogen ratio of the polymer.

• This observation leads to polymers containing
aromatic or cyclic structures.

The Need for Polymers with High C:H Ratios

C6H6 C 12H16 C 7H10 C nH2n+2

CH3(CH2)nCH3

1 0.75     0.7          0.25
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Tethering Function, Etch Resistance, Mechanical & Thermal Properties

Acid Lability Base Solubility

OO

OO CC

R
H

Typical Design Example
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* No aromatic groups       High transparency at 193 nm

* High Carbon/Hydrogen ratio       Good etch resistance

R

How About Alicyclic Compounds ?
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R

CyclopentadieneDicyclopentadiene

∆ 2

Monomer Synthesis
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Diels-Alder Reaction

CH2

HC

HC

CH2

CH2

CH2

+

H2
C

HC

HC
C
H2

CH2

CH2

1,3-butadiene ethylene cyclohexene

New pi bond

New sigma bond

New sigma bond

33개의개의 pi pi 결합이결합이 22개의개의 sigma sigma 결합과결합과 11개의개의 pi pi 결합으로결합으로 전환되었다전환되었다!!!!!!
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Radical Polymer

ROMP

K2IrCl6

R
Hydrogenation

n

Addition Polymer

Pd(CH3CN)4(BF4)2

n

R

n

or

n

R

Pathways to Polymerization
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* Advantages    
- High Thermal Stability
- Excellent Storage Stability

* Disadvantages
- Metal Contamination
- Low Yield 

Addition Polymerization



Prof. Jin-Heong Yim

* Chain Polymerization Mechanism
* Driving Force is  Release of Ring Strain

M R

M R

M R

( M = R' )

O
O

O OOHO

x y z
H2N2

O
O

O OH O O

x y

* Example *

ROMP (Ring Opening Metathesis Polymerization)
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* Advantages
- Good transparency at 193nm
- High yield and controllable MW

* Disadvantages
- Synthetic cost
- Phase separation with common PAGs
- Very dilute developer concentration
- Adhesion problem limit resolution

Lithographic Performance of ROMP Polymers 
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Monomer preparation :

Polymerization :

H
H

+
CO 2

CO 2

Diels-Alder

+
CO 2 CO 2

Diels-Alder

t-Butylnorbornene-5-carboxylate (BNC)

Norbornene carboxylicacid (NCA)

o

y

or

x COOHCOOBut
y

x
COOBut COOH

+ 140 C+

COOBut COOH

O O
6h

Radical Copolymerization
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<Problem>
- Poor etch resistance

BNCBNC--MA copolymerMA copolymer

o/OO O

O
O

+ AIBN
THF 70 C

O
O

OO O

n

BNC Maleic anhydride

: 80% yield
  (Mn 3000)6h/

- Increasing polarity with MA to improve adhesion

Improving Adhesion 
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DBNCDBNC--MA copolymerMA copolymer

/ o
OO O

+ AIBN
THF 70 C

OO O

O
O

O
O

n
/ 6h

DBNC Maleic anhydride

: 40% yield
  (Mn 3000)

- Enhancing etch resistance

Improving Etch Resistance 
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Takechi, S. Takahashi, M.; Kotachi, A.; Nozaki, K.;
Yano, E.; Hanyu, I.; J. Photopolym. Sci. Technol., 1996, 9(3), 475.

DBNC-alt-MA
copolymer

BNC-alt-MA
 copolymer

APEX-E

Rate (A/min) 453 633 603

Relative Rate 0.76 1.05 1.00

yx

O

O

O OH

n

OO O

O
O

O
O

OO O

n

DBNC-alt-MA BNC-alt-MA APEX-E

Result (etch data)
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80nm Lines
90nm Lines100nm Lines

!!!!!!

Result (SEM)
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1. Addition Polymers
- thermal and storage stability
- metal contamination and low yield

2. ROMP Polymers
- excellent transparency and storage stability
- capable of resolving 0.25µm features
- require non-standard developer

3. Radical Polymers
- alternating copolymers
- capable of resolving 80 nm features
- exhibit etch resistance higher than conventional resists

Mid-Summary
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Chemically Amplified Resists 
for F2 Excimer laser Lithography

Resolution   :  < 70 nm

Absorbance : < 2.0 /µm

Sensitivity   : < 30 mJ/cm2
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157 nm Photoresist

Solid state absorbance of photons in the 130 to 180 nm range (approximately 7 to 10 eV) 
is still dominated by valence band electronic transitions.

Many “common” chemical bonds are sufficiently absorptive to lead to efficient exicitation
of the polymer matrix.

The 157 nm absorption is dominated by C(2p) electrons, whose absorption band edge is 

very close to 157 nm, and whose transition probability can be dramatically affected by the 

chemical bonding environment.

C-F bonds are transparent at 157 nm !

Problem of the Transparency
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Photon absorption Characteristics 
of several ground state electrons
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Absorption Coefficients at 157nm

Polymer A
(㎛-1)

L(OD=0.4) 
(nm)

Si- O BACKBONE
Poly(hydrosilsesquioxane)

Poly(dimethylsiloxane)
Poly(phenylsiloxane)

CARBON BACKBONE
Fluorocarbon, 100% fluorinated

Hydrofluorocarbon, 30% fluorinated
Partially esterified hyrofluorocarbon, 28%fluorinated

Poly(vinyl alcohol) (99.7%)
Fully esterified hydrocarbon, 31% fluorinated

Ethyl cellulose
Poly(methylmethacrylate)

Polynorbornene
Polystyrene

Poly(vinyl phenol)
Poly(norbornylmethacrylate)
Poly(adamantylmethacrylate)
V1.0 acrylic terpolymer resin

Poly(chlorostyrene)
Poly(acrylic acid)

0.06
1.61
2.68

0.70
1.34
2.60
4.16
4. 56
5.03
5.69
6.10
6.20
6.25
6.67
6.73
8.20

10.15
11.00

6667
248
149

571
298
154
96
88
80
70
66
64
64
60
59
49
39
36
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Backbone of the 157 nm Photoresist

Hydrofluorocarbon Functionalized
Siloxane/Silsesquioxane

R

Fx

x

Si O

R

O

 Si
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Si O

R1

R2 n

CF2 CF2

x

y
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Problems of Materials

Hydrofluorocarbon Materials

Siloxane/ Silsesquioxane Materials

• Difficulty with regard to aqueous base solubility
• Reduction of adhesion
• Difficulty of synthesis

Incorporation of fluorine into a resist must be done only in limited fashion

• Low Tg of siloxane
• Solubility of silsesquioxane
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Etch Resistance

OH
F F

R

Fx

x

CF2 CF2

x

y

Aromatic compound

Alicyclic compound
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Protecting Group

CF3
O

CF3

O

CF3
OH

CF3

H+

O

O

OH

O

OH

O O

O

H+ H+

248 nm 193 nm 157 nm

pKa= 10 pKa= 5 pKa= 11
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Balancing photoresist properties at 157 nm

Base Solubility

Transparency

Transparency

Etch, Tg

Base Solubility

Etch, Tg
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Approach to Design of Photoresist polymer

Backbone Etch 
Resistance

Developer
Solubility

Protecting
Group

Transparency

Patterson, Proc, SPIE 3999, 365 (2000)
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Siloxanes

(Tg~ 90℃)

Fluorinated, high Tg polysiloxane
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Silsesquioxanes

Silsesquioxanes from commercially available hydridosilsesquioxane
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Silsesquioxanes

Dinorbornyl silsesquioxanes

A silsesquioxane copolymer (for better adhesion, higher Tg)

A silsesquioxane from protected allylhexafluoroalcohol

Synthesis of an acid-labile, transparent silsesquioxane
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Silsesquioxanes
Incorporation of polyhedral oligosilsesquioxane (POSS) in chemically amplified resists 
to improve their reactive ion etching resistance

- Hengpeng Wu, M. J. Yacaman, J. Vac. Sci. Technol. B 19(3), 2001, 851-855 

Fig. SEM micrograph of polymers
: Dose: 5 µC/cm2 ; feature dimension: 240 nm
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Hydrofluorocarbon Resist

THP-protected poly(vinyl alcohol-co-α-trifluoromethyl vinyl alcohol)
: 0.55 µm pattern (m/n = 55/45)
: max. 70% protection with ATPB (cat.) instead of PTSA 

Schmaljohann, Proc, SPIE 3999, 330 (2000)
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