Chapter 9 Generation of (Nano)Particles by Growth

9.1 Nucleation

(1) Supersaturation

Thermodynamics assumes a phase change takes place when there reaches
Saturation of vapor in a gas,
Saturation of solute in a solvent or
Saturation of solute in a solid solution....

* Vapor pressure and solubilities indicate the saturation...

In real world, the phase change requires a certain degree of supersaturation,

accompanying a formation of nuclei in the media...

Supersaturation of growth species, S
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where p: partial pressure of the species i in the gas phase >p,
c. concentration of species i in the solution

Py, Co- vapor pressure and saturation concentration of the species i

(2) Formation of Nuclei (Nucleation)
1) Critical Nuclei and Energy Barrier

Gibbs free energy change for a sphere of the growth species from molecules
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Newly formed nucleus is stable only when its radius exceeds a critical size r*(or

x*)...

At critical size r*(x*)
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- Vapor pressure elevation (or boiling point lowering) of small particles

2) Nucleation rate [number of nuclei formed /(timevolume of medium)]

Homogeneous nucleation

- For vapor-to-droplet in gas
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where m.: molecular mass
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- For solute-to-particles in solution
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where C,: initial concentration

x,,. molecular diameter

* Critical saturation ratio, S at Ry=1.0

For water vapor at 300°C, S, =3.1

C

Heterogeneous nucleation

- Formation of nuclei on existing foreign surface
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AG*,,, = AGH

where 0: angle of contact

Since AG*,,, < AG*,

- Heterogeneous nucleation is easier than homogeneous nucleation in most

cases...

* Criteria for homo or heterogeneous nucleation
For §> S, ., homogeneous nucleation

For <8

C

i, heterogeneous nucleation

* If foreign surface is supplied by foreign nuclei(ions, clusters...), particle growth
on the existing nuclei after homogeneous nucleation. This resulted in the

growth of monodisperse particles...



ex. artificial rain formation

* If the foreign surface is supplied by the plain surface, thin film or whiskers

will grow...
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9.2 Growth by Condensation

- Condenstaion : growth of particles by collision of individual molecules

followed by sticking...

(1) Growth Law
- In general condensation occurs in diffusion limited condition...

In free molecule regime
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In continuum regime
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In terms of particle volume, v
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- If p<p,, evaporation occurs..
- For growth from liquid phase
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* z—i is called "growth law".

* Variation in size decreases as growth by condensation proceeds!

(2) Ostwald ripening
From Kelvin equation
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For the two particles, =, >z, = ¢, <<c,

Solute will deposit onto the surface of the larger particle, whereas the small

particle has to continue dissolving...

Example.

A 30-pm-diameter water droplet is evaporating in a chamber. The chamber temperature is 20°C, and the pressure is

760mmHg. The chamber relative humidity is 50%. Find the droplet evaporation rate in grams of water lost per second.

Diffusion coefficient of water vapor in air is 0.251 cm2 / S and vapor pressure at 20°C is 17.50 mmkHg.
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9.3 Growth by Coagulation
(1) Introduction

- Growth as a result of collision of a particle with other particle and

subsequent sticking with each other...
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Colhsion

Coagulation

ﬁ ﬁ- Coalescence
\ % Azsrezation

- Sources of collision
Brownian motion
External force fields

Particle-particle interaction (polar, coulombic)

- Coalescence
Spherical growth: liquid-phase growth

Occurs for most liquid particles and for rapid sintering solid particles

- Aggregation(Agglomeration)
Nonspherical growth keeping identities of primary particles

Solid-phase growth
0 KR

Aggregation of TiO, nanoparticles Aaggregation of iron nanoparticles



(2) Mathematical Description for Coagulation
Let

Nij : Number of collisions occurring per unit time per unit volume of

medium between the particles having diameters (volumes) di(v;) and dj(v))

respectively.

N, ;=D
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where

n;, n;; number concentration of colliding particles v;, v; respectively

Mkab

i, j: number of basic units making particles (e.g. i-mer and j-mer)

In terms of continuous size distribution

N(vi,vj) = b(vi,v]- n (v,)n (vj )dvidv_,j

where b, ;= b(v,v,): collision frequency function

"Coagulation coefficient”

- Coagulation resulted in the increase in size but decrease in the number

concentration of particles...

In discrete notation
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(3) Brownian coagulation
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For polydisperse particles

or b

When z; >z, b ;>b,, .

i
. Different-size coagulation occurs faster than that between similar size
coagulation...
Monodisperse particles becomes polydisperse...

Polydisperse particles becomes monodisperse..

* Self-preserving, o, ,iimae =14

For monodisperse particles in air at latm and 20°C
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Integration yields

Ny
M) = 1+ N, Kt
Since N(%xg): constant and Nyzj = Nz*
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Example.

oL . . . . . 7 3 . . .
The initial number concentration of a magnesium-oxide fume is 10 / cm”, and the particles are 0.2um in diameter.
. . . . 6 3 . . .
Determine the time required for the concentration to decrease to 10 / cm” . Assume simple monodisperse coagulation at

20°C with a constant K of 5>X 10" 16m3/8 [5X10 1067713/8]. What is the average particle diameter at the end
of this period?
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9.4 General Dynamic Equation

Population balance for particles
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Accumulation Diffusion convection migration

_|_( dn;tv) ) mw]+( dnd(tV) ) n ( dn;tv) )

coag cond

where




where I: particle current

the number of particles per unit time per unit volume of gas

passing the point v

Since I(v) ~ n@)fi—;‘
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9.5 Some Comments on Particle Growth
(1) Overall Growth
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(2) Effect of Growth Mechanisms on Particle Size Distribution

Nucleation
- Increase of particle number concentration

- Gives delta function in particle size distribution in given condition

- May cause accelerating the rate of coagulation

Condensation



- No effect on particle number concentration

- Results in monodisperse size distribution.

Coagulation

- Decreases in particle number concentration

- Gives polydisperse size distribution in growth process

(3) Formation of Monodisperse Particles

- Maintain low rate of nucleation using low supersaturation
- Induce heterogeneous nucleation
* Matijevic's method
- Allow the same growth time for all the particles by shortening the time of
nucleation

- Suppress coagulation

- Using electrostatic repulsion (electrical double layer)
- Using adsorption of surfactants and macromolecules

- Rapid cooling followed by rapid dilution
- Use of Ostwald ripening (not for oxides)

9.5 Formation Methods of Nanoparticles

(1) Introduction

* Keys for NP preparation
- Formation of high-degree supersaturation in narrow time or space
- Suppression of aggregation

- Monodisperse growth- diffusion-controlled growth/Ostwald ripening

* Classification of preparation methods
- In terms of phase of medium for preparation
Gas /liquid / aerosol / solid phases

- In terms of method of "monomer" preparation



Physical/ chemical

(2) Gas-phase preparation

Bulk

Evaporation/ dissolution

Evaporation/ dissolution

growth

- Rapid increase in concentration of condensable vapor component by

- Vaporization/Sublimation: physical

- Chemical reaction

ex. TiCly(g)+ O,(g)= TiO,(s)+2Cl,

- Needs energy from hot wall, flame,

laser, plasma...

- Followed by rapid cooling, expansion and dilution

1) Physical Methods

Laser and optics
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2) Chemical Methods
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(2) Liquid-Phase Preparation
Mostly by chemical methods...
aA()+bB(l,g,s)—cC(s)+dD(1)

- If C: highly insoluble, high chances to form very small and so many nuclei
- Results in giant aggregates composed of nanoparticles due to its high
concentration and low mean free path in liquid phase.

- Requires to suppress aggregation of the nanoparticles

- Electrical double layer
- Surfactants

- Polymers
- Liquid-phase preparation:
- Delicate close to art...but robust...

- Involves many chemicals, many processes



1) Formation with polymeric stabilizer

- In polymer solution
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Iron oxide (left) without (vight) with dextran

- With simultaneous polymerization
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Formation of silica nanoparticles

-MPS= y -methacrylovioxypropyl-trimethoxysilane

- From a single precursor for nanoparticles and polymer

Formation af silica nanoparticles

2) Confined growth

- In polymer matrix



- In layered materials

e.g. kaolinite (ALSi,O5(OH),)

Kaolinite
d,=0.72 nm

1. DMSO 2. Washed
intercalation by methanol

Dimethyl sulfoxide (DMSQ), (CH:),50

e

Kaolinite/DMSQO
d=1.12 nm

Ag’ l adsorption

uv NaBH,
irradiation reduction

- In porous materials Ag/kaolinite Agfaolinite

e.g. zeolites, mesoporous silica

——

Silver NP in mesaporous silica



- In nanotubes

.8 -

BE DF and conical DF image of Pt particles inside of 510,-NIs

- Preparation of nanoparticles in microemulsion

3) Sol-Gel Methods
Precursors
- Metal alkoxides, M(OR); in organic solvent

- Metal salts (chloride, oxychloride, nitrate..) in aqueous solution

Basic mechanism

- Hydrolysis M-OR+ H,O = -M-OH + xROH

- Polycondensation
-M-OH + RO-M = -M-O-M- + ROH
-M-OH + HO-M- = -M-O-M- + H;O

- Occurs sequentially and in parallel

- Usually M(OR),, n>1 — three-dimensional structures...

Gel formation

e.g. Sol-gel transformation for silica
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Characteristics of aerogels

Porosity: 75-99%

Specific surface area: ~ >1,000m2/g
¢f. porosity of xerogel: 1-50%
- Very light, transparent

- Used in catalysts, sensor, electrodes, thermally and/or electrically insulating

materials




