
Chapter 1. Particle Size Analysis

1.1 Introduction

Particle size/particle size distribution: a key role in determining the bulk 

properties of the powder...

    Size ranges of particles (x)

- Coarse particles : >10μ m

- Fine particles : ～1μ m

- Ultrafine(nano) particles : <0.1μ m  (100nm)

1.2 Describing the Size of a Single Particle

Description of regular-shaped particles: Table 3.1

Figure 3.1

Geometric diameters

- Martin's diameter

- Feret diameter

- Shear diameter

Equivalent (sphere) diameters Figure 3.2

- Equivalent volume (sphere) diameters:

the diameter of the hypothetical sphere having the same volume

xv= ( 6V
π )

1/3

- Equivalent surface diameter:

the diameter of the hypothetical sphere having the same surface area

x s= ( S
π )

1/2



- Surface-volume diameter: 

the diameter of the hypothetical sphere having the same surface-to- 

volume ratio 

x sv=
6V
S

"Which diameter we use depends on the end use of the information."

Worked Example 3.1

Worked Example 3.6

1.3 Description of Population of Particles

Particle size ～ diameter, x (μ m )

Figure 3.3

Frequency distribution f N ( x ) , [fraction] 

f N ( x )dx: 

fraction of particle counts (numbers) with diameters between x  and      

      x+ dx  

Cumulative distribution :   




  , [fraction]

f N( x ) =
dF N ( x )

dx
   

Mass(or volume) distribution f M ( x ) ,( mass fr action/μ m)

f M ( x )dx:

fraction of particle mass with diameters between x  and x+ dx

f M( x )dx=
ρ p
π

6
x 3f N( x )dx

⌠
⌡

∞

0
ρ p
π

6
x 3f N( x )dx

=
x 3f N( x )dx

⌠
⌡

∞

0
x 3f N( x )dx

= f V ( x )



Surface-area size distribution function

f S ( x )dx=π x 2f ( x )dx

⌠
⌡

∞

0
π x 2f ( x )dx

=
x 2f ( x )dx

⌠
⌡

∞

0
x 2f ( x )dx

Figure 3.4

Table 3.3

1.4 Conversion Between Distributions

From above

f M ( x)= f V ( x)=
x 3f N ( x)

⌠
⌡

∞

0
x 3f N ( x)dx

= k V x 3f N

where kV =
1

⌠
⌡

∞

0
x 3f N( x)dx

f S ( x) =
x 2f N ( x)

⌠
⌡

∞

0
x 2 f N ( x)d x

= k S x 2f N

where k S =
1

⌠
⌡

∞

0
x 2f N( x )dx

f M ( x)= f V ( x) = k V x 3f N = kVx
3 f S ( x)

k Sx
2 =

kV

k S

xf S ( x)

where kV =
1

⌠
⌡

∞

0
x 3f N( x)dx

Worked Example 3.2

Worked Example 3.3

Worked Example 3.4



1.5 Describing the Population by a Single Number 

1) Averages

Mode: most-frequent size

Median: x  at F ( x)= 0.5  

Mean: Table 3.4

In general, g( x) = ⌠
⌡

∞

0
g(x)f ( x)dx= ⌠

⌡

1

0
g( x)dF ( x)  

- Arithmetic mean: g( x) = x

x= ⌠
⌡

∞

0
xf( x)dx= ⌠

⌡

1

0
xdF ( x)

where F ( x)  can be F N ( x ) , F S ( x )  and F V ( x )

* Also called first moment average

If F ( x) = F N( x) , x aN= ⌠
⌡

1

0
xdF N

                                        Arithmetic mean diameter of number distribution

If F ( x) = F S ( x ) , 

x a S=
⌠
⌡

1

0
xdF S =

⌠
⌡

1

0
xdF S

⌠
⌡

1

0
dF S

=

⌠
⌡

1

0
x 3dF N

⌠
⌡

1

0
x 2dF N

= xSV

             Arithmetic mean diameter of surface area distribution  Surface-volume mean diameter

                                                                  (Sauter mean diameter)

- Geometric mean ( g( x) = ln x)

log xg= log x= [⌠⌡
1

0
log xdF ]

- Harmonic mean ( g( x) =
1
x

)

1

x h

= [⌠⌡
1

0

1
x

dF ]

Figure 3.6

Worked example 3.5



2) Standard deviation

σ = [⌠⌡
∞

0
( x- x) 2dF (x) ]

1/2

= [⌠⌡
∞

0
( x- x) 2f ( x)dx]

1/2

Degree of dispersion

1.7 Common Methods of Displaying Size Distribution 

1) Arithmetic Normal(Gaussian) distribution: Figure 3.7

f ( x)dx=
1

σ 2π
exp [- ( x- x)

2

2σ 2 ]dx
and 

σ = x84%-x50% = x50%-x16% = 0.5(x84%-x16% )

- Hardly applicable to particle size distribution Figure 3.8

∵ Particles : no negative diameter/distribution with long tail

2) Lognormal distribution :

위의 정규분포함수에서 x를 ln x로 σ 를 lnσ g로 바꾸면 얻어진다.

f ( ln x)d ln x=
1

( lnσ g ) 2π
exp [- ( ln x- ln x)

2

2 ( lnσ g)
2 ]d ln x

where ln x = ⌠
⌡

1

0
ln xdF ( x) = ⌠⌡

1

0
ln xdF ( ln x) = ⌠⌡

∞

- ∞
ln xf ( ln x)d ln x= ln x g

              x g : geometric mean(median) diameter

              

lnσ g= [⌠⌡
∞

0
( x- x) 2dF (x) ]

1/2

= [⌠⌡
∞

- ∞
( ln x- ln xg)

2f ( ln x)d ln x]
1/2

                           σ g  : geometric standard deviation

Figure 3.9

σ g=
x 84%

x 50%

=
x 50%

x 16%

= [ x 84%

x 16%
]

1
2



Fullerene-named after the architect, Buckminster Fuller, who 

designed "Geodesic dome" 

* Dispersity criterion

    - Monodisperse : σ = 0  or σ g = 1 , in actual σ g < 1 . 2

    - Polydisperse: σ g > 1 . 4  ( o r 1 . 2 )

1.S1 Understanding Size of Nanoparticles

Comparison with bulk
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Number of molecules

Particle diameters,nm 1 10

25

2.5´107

107

100

Full-shell clusters

Atoms(molecules) in nanoparticles

Extremely small nanoparticles!



* Polymers-Nanoparticles?

  

 , in 

where (molecular weight) and (density) in cgs units

Example.
분자량이 100,000이고 밀도가 1g/cm3인 고분자 물질의 부피와, 구라고 가정하고 지름을 구해 보아라.

* Biological substance-Nanoparticles?

  
 



, in 



* Special nanoparticles(nanomaterials)-carbon nanotubes

1.S2 Size-Related Properties of Nanoparticles

* Finite size effect - small number of atoms and electrons

* Surface/interface effect - large fraction of active surface atoms

Example.
Consider a sphere with a diameter with a diameter of 1um. If this mass of sphere is converted (through a 
size reduction process) to spheres with a diameter of 1nm, calculate the increase in surface area of the 
smaller sized spheres.



Energy Levels in Semiconductor and Metal Particles

(1) Quantum size (confinement) effects
-  Small number of atoms and electron as size decreases(<de Broglie  wavelength*)

Optical properties of semiconductors
- Rapidly increase in band gap with a decreasing size
- Blue shift



Coulomb blockade

(2) Surface plasmon resonance of metal nanoparticles

- Coherent excitation of all the free electrons by light, leading to an in-phase oscillation 

for particles ( lightx l<  )

- Intense SP absorption bands at a certain wavelength

(3) Coulomb Blockade

Ohm's law,   
 , 

I is linear with respect to V

A single electron can be added 

when   
   or   


 
  

where   πεε
   For bulk materials (→∞), ∞ ∞  and →

   For nanoparticles (↓), ↓  and →

When  ≫  and ≫ 



* Single electron transistor



(3) Magnetic properties of ferromagnetic particles

- Ferromagnetic materials
Atoms: unpaired electrons → domain formation
Bulk: multidomain
cf. diamagnetism, paramagnetism

- Behavior of ferromagnetic materials under magnetic field: BH diagram

- For small particles( nmx 100~10: ), single domain is in the lowest energy state →        

  "Single- domain particles"
  ․  Used for magnetic recording media

- For smaller particles( nmx 15< ) 
  ․  Thermal fluctuation > magnetic alignment as the size decreases → 

  "Superparamagnetism"                                                       

           

  ․   No hysteresis loop and high Ms



  ․  Used in biomedical application, ferrofluids, sensors

1.9 Methods of Particle Size Measurement

1) Sieving

2) Microscopy

Electron microscopy

3) Sedimentation

4) Permeametry

5) Electrical methods

․  Electrical mobility

․  Electrozone sensing

6) Laser Diffraction

․  Optical particle counter

․  Photon correlation spectroscopy (dynamic light scattering)


