Chapter 12. Heat Transfer to Fluids without Phase Change

In most cases, frictional heating may be neglected.

For highly viscous fluids, it may be important (ex. injection molding of polymers).

 \leftarrow Temperature & fluid property variations become large.

*** Thermal & hydrodynamic boundary layers (**열경계층 및 유체동력학적 경계층**)**

Fig. 12.1. Thermal & hydrodynamic boundary layers on flat plate.

fully developed flow --- parabolic profile fully developed temperature profile --- plug (or rod-like) profile

. Hydrodynamic boundary layer (유체동력학적 경계층**)**: a boundary layer developing

within which the velocity varies from $u = 0$ at the wall to $u = u_0$.

. Thermal boundary layer (열경계층**)**: a boundary layer developing

within which the temperature varies from $T = T_w$ at the wall to $T = T_{\infty}$.

Relationship between the thickness of two boundary layers

$→$ **Prandtl number**

: 즉, 운동량확산계수 /열확산계수

 $Pr > 1$ (TBL < HBL)

for most liquids (2.5 for water, 600 for viscous liquids and concentrated solutions)

$$
Pr = 1 (TBL = HBL)
$$

for gases (0.69 for air, 1.06 for steam)

 $Pr < 1$ (TBL > HBL)

for liquid metals $(0.01 \sim 0.04)$

Heat Transfer by Forced Convection in Laminar Flow

In laminar flow, heat transfer occurs only by conduction.

 \leftarrow no eddies to carry heat by convection

Basic assumptions:

- . Fluid properties are constant & temperature independent.
- . Flow is truly laminar with no eddies or cross currents.

*** L aminar flow h eat trans fer to flat plate**

unheated length $=x_0$

local heat-transfer coefficient

: *h* at any distance *x* from the edge

layer thickness of TBL

local Nusselt number

: the ratio of the distance x to the thicknessof the thermal boundary layer

When the plate is heated over the entire length ($\leq x_0 = 0$),

$$
Nu_x = 0.332 (Pr)^{1/3} (Re_x)^{1/2}
$$

local Reynolds number = $\frac{u_0 x \rho}{\mu}$
 $x_0 J \theta \ge \theta$,

$$
Nu_x = \frac{0.332}{(1 - (x_0/x)^{3/4})^{1/3}} (Pr)^{1/3} (Re_x)^{1/2}
$$

Average value of Nu over the entire length of the plate x_1 ,

$$
h=2h_{x_1}
$$

(Average coefficient is twice the local coefficient at the end of the plate.)

$$
\therefore Nu = 0.664 (Pr)^{1/3} (Re_{x_1})^{1/2}
$$

*** L aminar flow h eat trans fer in tubes**

For fully developed flow

Nu inside a pipe,

 $\rm{G} z \,{>}\, 20$ 인 경우의 실험식: $\rm{Nu} \,{\cong}\, 2.0 \rm{G} z^{1/3}$ --- Eq. (12.25)

Correction for heating or cooling

Å for very viscous liquids w/ large *T* drops

viscosity correction factor

Heat Transfer by Forced Convection in Turbulent Flow

T urbulence in tubes ----- Re > 2,100

(엄밀하게는 Re > 4,000인 경 우2,100 < Re < 4,000 인 경우는 transition region)

Heat transfer rate in turbulent flow $>$ that in laminar flow

. Empiric al correlation for long tubes with sharp-edged entrances:

0.8 \sim 1/3 $\left[0.023\left|\frac{D\sigma}{\mu}\right|\right]\left|\frac{c_p\mu}{k}\right|$ ⎠ ⎞ ⎝ $\big)^{0.8} \bigg($ ⎠ \boxed{DG} ⎝ $= 0.023 \left(\frac{DG}{\mu} \right)^{0.8} \left(\frac{c_p}{k} \right)$ $DG \mid c$ *k* $h_i D \left[\begin{array}{cc} \rho & \rho \end{array} \right]$ μ

G: mass velocity (= $V\rho$) or mass flux

 \rightarrow Nu = 0.023Re^{0.8} Pr^{1/3} : *Dittus-Boelter equation*

. Modified relationship:

$$
\frac{h_i D}{k} = 0.023 \left(\frac{DG}{\mu} \right)^{0.8} \left(\frac{c_p \mu}{k} \right)^{1/3} \left(\frac{\mu}{\mu_w} \right)^{0.14}
$$

\n
$$
\rightarrow \text{Nu} = 0.023 \text{Re}^{0.8} \text{Pr}^{1/3} \phi_v \qquad \text{: Sieder-Tate equation}
$$

Unit Operations Chapter 12. Heat Transfer to Fluids w/o Phase Change

Natural Convection

Example of natural convection: A hot, vertical plate in contact with air

Fig. 12.7. Velocity and temperature gradients, natural convection from heated vertical plate.

^z> 600 mm: *T* vs. *^x* curves do no change with further increase in height.

*** Natural convection to air from a hot, horizontal pipe**

*** Natural convection to air from vertical shapes & horizontal planes**

 $Nu_f = b(Gr Pr)_f^h$

Å Constants *b* & *n* are given in Table 12.4.

f means that the properties are taken at the mean film between wall and bulk *T*.

Related problems: (Probs.) 12.1, 12.8, 12.17 and 12.18.

