Chapter 12. Heat Transfer to Fluids without Phase Change

In most cases, frictional heating may be neglected.

For highly viscous fluids, it may be important (ex. injection molding of polymers).

← Temperature & fluid property variations become large.

* Thermal & hydrodynamic boundary layers (열경계층 및 유체동력학적 경계층)

Fig. 12.1. Thermal & hydrodynamic boundary layers on flat plate.

fully developed flow --- parabolic profile fully developed temperature profile --- plug (or rod-like) profile

. Hydrodynamic boundary layer (유체동력학적 경계층): a boundary layer developing

within which the velocity varies from u = 0 at the wall to $u = u_0$.

. Thermal boundary layer (열경계층): a boundary layer developing

within which the temperature varies from $T = T_w$ at the wall to $T = T_\infty$.

Relationship between the thickness of two boundary layers

\rightarrow Prandtl number

: 즉, 운동량확산계수/열확산계수

r Pr > 1 (TBL < HBL)

for most liquids (2.5 for water, 600 for viscous liquids and concentrated solutions)

Pr = 1 (TBL = HBL)

for gases (0.69 for air, 1.06 for steam)

 \sim Pr < 1 (TBL > HBL)

for liquid metals $(0.01 \sim 0.04)$

Heat Transfer by Forced Convection in Laminar Flow

In laminar flow, heat transfer occurs only by conduction.

 \leftarrow no eddies to carry heat by convection

Basic assumptions:

- . Fluid properties are constant & temperature independent.
- . Flow is truly laminar with no eddies or crosscurrents.

* Laminar flow heat transfer to flat plate

unheated length = x_0

local heat-transfer coefficient

: *h* at any distance *x* from the edge

layer thickness of TBL

local Nusselt number

: the ratio of the distance x to the thickness of the thermal boundary layer

When the plate is heated over the entire length ($\overline{\cong}, x_0 = 0$),

Nu_x = 0.332 (Pr)^{1/3} (Re_x)^{1/2}
local Reynolds number =
$$\frac{u_0 x \rho}{\mu}$$

 x_0 가 있는 경우,
Nu_x = $\frac{0.332}{\left(1 - (x_0/x)^{3/4}\right)^{1/3}}$ (Pr)^{1/3} (Re_x)^{1/2}

Average value of Nu over the entire length of the plate x_1 ,

$$h = 2h_{x_1}$$

(Average coefficient is twice the local coefficient at the end of the plate.)

* Laminar flow heat transfer in tubes

For fully developed flow

Nu inside a pipe,

Unit Operations

Gz > 20 인경우의 실험식: Nu ≅ 2.0Gz^{1/3} --- Eq. (12.25)

Correction for heating or cooling

 $\leftarrow \text{ for very viscous liquids w/ large } T \text{ drops}$

Nu =
$$2 \operatorname{Gz}^{1/3} \phi_v$$
 \checkmark $\phi_v \equiv \left(\frac{\mu}{\mu_w}\right)^{0.14}$ viscosity at wall T

viscosity correction factor

Heat Transfer by Forced Convection in Turbulent Flow

Turbulence in tubes ----- Re > 2,100

(엄밀하게는 Re > 4,000인 경우 2,100 < Re < 4,000인 경우는 transition region)

Heat transfer rate in turbulent flow > that in laminar flow

. Empirical correlation for long tubes with sharp-edged entrances:

 $\frac{h_i D}{k} = 0.023 \left(\frac{DG}{\mu}\right)^{0.8} \left(\frac{c_p \mu}{k}\right)^{1/3}$

 \longrightarrow G: mass velocity (= $\overline{V}\rho$) or mass flux

 \rightarrow Nu = 0.023 Re^{0.8} Pr^{1/3} : *Dittus-Boelter equation*

. Modified relationship:

$$\frac{h_i D}{k} = 0.023 \left(\frac{DG}{\mu}\right)^{0.8} \left(\frac{c_p \mu}{k}\right)^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

$$\rightarrow \text{Nu} = 0.023 \text{Re}^{0.8} \text{Pr}^{1/3} \phi_v \qquad : Sieder-Tate \ equation$$

Chapter 12. Heat Transfer to Fluids w/o Phase Change

Natural Convection

Example of natural convection: A hot, vertical plate in contact with air

Fig. 12.7. Velocity and temperature gradients, natural convection from heated vertical plate.

z > 600 mm: T vs. x curves do no change with further increase in height.

12

* Natural convection to air from a hot, horizontal pipe

* Natural convection to air from vertical shapes & horizontal planes

 $\operatorname{Nu}_{f} = b(\operatorname{Gr}\operatorname{Pr})_{f}^{n}$

 $\leftarrow \text{Constants } b \& n \text{ are given in Table 12.4.}$

f means that the properties are taken at the mean film between wall and bulk T.

Related problems: (Probs.) 12.1, 12.8, 12.17 and 12.18.

