Chapter 1. Definitions and Principles

Industrial chemical process – very complex

 \rightarrow can be broken down into a series of steps

 \downarrow

unit operation

(based on the same scientific principles)

Ex) 1. Manufacturing of salt (no chemical reaction appears)

transportation of solids and liquids

transfer of heat, evaporation, crystallization

drying, screening

2. Cracking of petroleum (chemical reaction involves)

transportation of fluids and solids

distillation, mechanical separations

cracking reaction

Unit Systems

SI units
$$\longleftrightarrow$$
 FPS units \downarrow kg, m, s ft, lb, s

Standards

- (kg) Platinum cylinder (France 표준국)
- (s) ¹³³Cs의 진동수 9,192,631,770 회
- (K) T_3 of pure water (물의 삼중점) 273.16 K
- (m) length of light path during 1/299,792,458 s
- (mol) ¹²C의 12 g에 해당하는 atom 수

* SI Units

N, J, K, Pa

$$\downarrow$$
 \downarrow \downarrow \downarrow \downarrow \downarrow N/m^2
 $T(^{\circ}C) = T(K)-273.15$

$$I(^{\circ}C) = I(K)-2/3.15$$

g(중력가속도) = 9.8 m/s^2
1 bar = $1 \times 10^5 \text{ Pa} = 10^5 \text{ N/m}^2$
1 atm = 1.013 bar

* CGS Units

1 dyn = 1 g·cm/s²
1 erg = 1 dyn·cm =
$$1 \times 10^{-7}$$
 J
1 cal = 4.184 J (물 1 g을 1 °C 올리는데 필요한 열량)
 $R(기체상수) = 8.314$ J/mol·K (정의: $\lim_{p \to 0} \frac{pV}{nT} = R$)
= 1.987 cal/mol·K
= 0.082 l·atm/mol·K

* FPS Units

1 lb = 0.4536 kg
1 ft = 0.3048 m
1 °R = 1/1.8 K

$$T$$
 (°F) = 32 + 1.8 T (°C) T (°R) = 459.67 + T (°F)
물의 어는 점: 0 °C = 273.15 K = 491.67 °R = 32 °F
1 lb_f (pound force)= 32.174 lb·ft/s² $\leftarrow 1$ lb_f = 1lb_m × $\frac{9.80665 \, \text{m/s}^2}{0.3048 \, \text{m/ft}}$
cf.) 1 kg_f = 1 kg· (9.8 m/s²) = 9.8 N
1 hp (horse power) = 550 ft·lb_f/s
1 BTU (British thermal unit) = 778.17 ft·lb_f = 252 cal
(물 1 lb를 1 °F 올리는데 필요한 열량)
 $\rightarrow 1 \, \text{BTU/lb·°F} \equiv 1 \, \text{cal/g·°C}$

* Conversion factor

→ Appendix 1 (p. 1085 – 1087) 참고

Related Problems

(Example 1.1) Calculating factors for converting

(a)
$$N \rightarrow lb_f$$

(b) BTU
$$\rightarrow$$
 cal

(c) atm
$$\rightarrow$$
 lb_f/in² (psi)

(d) hp
$$\rightarrow$$
 kW

(Probs.) 1.1, 1.2, 1.10, 1.11 and 1.16