Chapter 13. Heat Transfer to Fluids with Phase Change

Phase change \sim addition or subtraction of heat at constant or nearly constant T

→ condensation of vapors & boiling of liquids

(Ex. condensation, evaporation, distillation, drying, crystallization ...)

Heat Transfer from Condensing Vapors

Film-type condensation (막상응축):

more common continuous layer of liquid

Dropwise condensation (적상응축):

begins to form at microscopic nucleation sites

(tiny pits, scratches, dust specks, ...)

tube surface – extremely thin film of negligible thermal resistance

 \rightarrow h for dropwise condensation ~ 5 to 10 times h for film-type condensation.

* Condensation of steam

Film-type: Both the steam and the metal tube are clean.

Dropwise: unwetted cooling surface & contaminated vapor

drop promoters ~ mercaptans on copper alloy
oleic acid "
able & difficult

unstable & difficult to maintain

(cf. steel & aluminum ~ difficult to give drop)

→ For normal design, film-type condensation is assumed.

Ex.) Vertical tubes

$$h_x = \frac{k_f}{\delta}$$
 condensate film을 통해 conduction으로만 열전달이 일어나는 경우로 가정

local film thickness (usually, 1/100 ~ 1/1,000 of tube diameter)

$$\delta = \left(\frac{3\Gamma \mu_f}{\rho_f^2 g \cos \beta}\right)^{1/3} \qquad \text{--- Eq. (4.59)}$$
 angle from the vertical (:\div = 0)

 Γ : condensate loading $(=\frac{\dot{m}}{b})$

~ mass rate per unit length of periphery (b: breadth of the film)

 h_x (of vertical surface)

$$=k_f \left(\frac{\rho_f^2 g}{3 \Gamma \mu_f}\right)^{1/3}$$

Fig. 13.1. Film thickness & local coefficients for methanol, descending film of condensate.

Heat Transfer to Boiling Liquids

* Pool boiling of saturated liquid

. Horizontal wire immersed in a vessel containing a boiling liquid

Fig. 13.4. Heat flux vs. temperature drop, boiling water at 212 °F on an electrically heated wire: AB, natural convection; BC, nucleate boiling; CD, transition boiling; DE, film boiling (T_w : wire T; T: boiling liquid T).

Fig. 13.5. *h* vs. Δ*T*, boiling of water at 1 atm on a horizontal wire. (Fig. 13.4를 변환시킨 그래프)

Four segments (from Figs. 13.4 & 5)

Natural convection (자연대류: line AB): slope of 1.25

$$\therefore \frac{q}{A} = a \Delta T^{1.25} \qquad --- \text{ Eq. } (13.19) \quad \longleftarrow \quad \text{Eq. } (12.72) 와 일치$$

Nucleate boiling (핵비등: line BC): slope of 3 ~ 4

Point *C*: critical temperature drop (임계온도강하)

peak flux를 나타내는 온도

Transition boiling (전이비등: line CD):

Heat flux and *h* both fall as *T* drop is raised.

Point *D*: Leidenfrost point (heat flux가 최소인 점)

Film boiling (막비등: line DE):

As T drop increases, the heat flux rises but h falls.

Film boiling is not usually desired because *h* is low for high *T* drop.

Radiation (복사: beyond point *E*):

Radiation heat transfer becomes important at very high T drop.

Effect of bubble formation of interfacial tension

Interfacial tension between liquid & heating surface

- (a) Small --- Bubble will pinch off easily.
- (b) Intermediate
- (c) Large --- Bubble tends to spread along the surface & blanket the heat transfer area.

