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Chapter 5. Incompressible Flow in Pipes and Channels

Shear Stress and Skin Friction in Pipes (전단응력및표면마찰)

* Shear-stress distribution

For fully developed flow, 
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* Relation between skin friction & wall shear

펌프에의한일이없고마찰을고려할경우의 Bernoulli 방정식은
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--- Eq. (4.71)

수있고 fully developed flow인

수평관을대상으로하며마찰은유체와관벽사이의 skin friction hfs만존재하므로
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sababab ppZZVV ∆=∆=== &,,, αα (압력강하는표면마찰에의한것이므로)

이경우 Bernoulli 식은
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* Friction factor (마찰계수),  f

여기서정의하는마찰계수 f 는 Fanning friction factor

또다른마찰계수로 Blasius or Darcy friction factor가있는데이는 4f 에해당

22
2

2/ VV
f ww

ρ
τ

ρ
τ

=≡ --- Eq. (5.6)

wall shear stress
density × velocity head

(단위면적당전단력)
(단위부피당운동에너지)즉,

skin friction hfs와 friction factor f와의관계:

2
42 2V

D
LfpL

r
h s

w

w
fs =

∆
==

ρ
τ

ρ
--- Eq. (5.7)

22 VL
Dpf s

ρ
∆

=∴
D
Vf

L
ps

22 ρ
=

∆ --- Eqs. (5.8)-(5.9)or



Unit Operations Chapter 5. Incompressible Flow in Pipes and Channels

* Flow in noncircular channels

In evaluating the diameter in noncircular channels, an equivalent diameter (등가지름)

Deq is used.

rH : hydraulic radius (수력학적반지름)Heq rD 4=

p
H L

Sr ≡ S : cross-sectional area of channel
Lp : wetted perimeter
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1) Circular tube: 2) Annular pipes: 3) Square duct:

단면이원형이아닌관의경우 Reynolds number Re또는 friction factor f등의계산시에

D대신 Deq혹은 r 대신 2rH를대입하여계산가능함을의미.
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Laminar Flow in Pipes and Channels

* Laminar flow of Newtonian fluids

원형단면을갖는흐름을대상, 속도분포는 centerline에대해대칭

u depends only on r
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Average velocity

--- Eq. (4.11)∫= udS
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이식을 와비교하면,  µ
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V --- Eq. (5.19)

In Laminar flow,

Kinetic energy correction factor,

Momentum correction factor,  

0.2=α Eq. (4.70)에 (5.15)와 (5.18)을대입해계산

3
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=β Eq. (4.50)에 (5.15)와 (5.18)을대입해계산
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Hagen-Poiseuille equation

--- Eq. (5.20)
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Eq. (5.21)을 Eq. (5.7)에대입하면 f와 Re 사이의관계가유도됨:
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* Laminar flow of non-Newtonian liquids

- Power law fluids

반지름 r에따른 velocity profile:

Fig. 5.4. Velocity profiles in the laminar flow
of Newtonian and non-Newtonian
liquids.
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- Bingham model
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반지름 r에따른 velocity profile:
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Fig. 5.5. (a) Velocity profile and
(b) Shear diagram
for Bingham plastic flow

- Some non-Newtonian mixtures at high shear violate the zero-velocity (no-slip) b. c.
ex) multiphase fluids (suspensions, fiber-filled polymers)  “slip” at the wall
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Turbulent Flow in Pipes and Channels

viscous sublayer (점성하층):
viscous shear ↑, eddy ×

buffer layer (완충층) or transition layer (전이층):
viscous shear & eddy 공존

turbulent core (난류중심부):
viscous shear ↓, eddy diffusion ↑

C.L.

wall

viscous sublayer buffer layer

turbulent core

Velocity profile for turbulent flow:

much flatter than that for laminar flow

Eddies      in the turbulent core: large but low intensity

in the buffer layer: small but high intensity

Most of the kinetic-energy content of the eddies lies in the buffer zone.

C.L.

wall

laminar flow
turbulent flow

Re ↑
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* Velocity distribution for turbulent flow

In terms of dimensionless parameters
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: friction velocity

: velocity quotient (무차원)

: distance (무차원)      y : distance from tube wall
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* Universal velocity distribution equations

i) viscous sublayer:

ii) buffer layer:

iii) turbulent core:

++ = yu
05.3ln00.5 −= ++ yu

5.5ln5.2 += ++ yu

intersection으로부터

for viscous sublayer

for buffer zone

for turbulent core
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305 << +y

30>+y
Re > 10,000  이상에서적용가능
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* Relations between maximum velocity

& average velocity V

When laminar flow changes to turbulent,

the ratio               changes rapidly

from 0.5 to about 0.7,

& increases gradually to 0.87 when Re=106.            

max/uV

maxu

For laminar flow,                is exactly 0.5.max/uV
from Eq. (5.19)

* Effect of roughness

Types of roughness

Rough pipe larger friction factor

k : roughness parameter

k/D : relative roughness

For laminar flow, roughness has no effect 

on f unless k is so large.            

Dkf /&Reofnft'=∴
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* Friction factor chart

↑Dk /

Friction factor plot for circular pipes (log-log plot)
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* Friction factor for smooth tube
* Drag reduction

Dilute polymer solutions in water
drag reduction in turbulent flow

Application: fire hose (a few ppm of PEO 
in water can double the capacity of a 
fire hose)
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(wide range)

* Non-Newtonian fluids

↑ppm↑n
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* Friction loss from sudden expansion

Ke can be calculated theoretically from the momentum balance equation (4.51) and 
the Bernoulli equation (4.71).
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3/4&2 == βαLaminar flow인경우에는 을사용하면 Ke를구할수있다.
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* Friction loss from sudden contraction

cross section of minimum area

2
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cfc
VKh = : average velocity of smaller or downstream section)

Kc : contraction loss coefficient
bV

Kc < 0.1                   for laminar flow     hfc is negligible.
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SK 14.0 for turbulent flow (empirical equation)
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* Friction loss from fittings

2

2
a

fff
VKh = : average velocity in pipe leading to fitting

Kf : fitting loss coefficient
aV

Table 5.1 Loss coefficients for standard pipe fittings
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skin friction loss coeff.
fitting loss coeff.

expansion loss coeff.
contraction loss coeff.

Bernoulli equation without pump: ( ) fba
ba hZZgpp
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* Total friction

대입

Ex. 5.2) Homework 



Unit Operations Chapter 5. Incompressible Flow in Pipes and Channels

05.0≈cK

To minimize expansion loss, the 
angle between the diverging walls 
of a conical expander must be less 
than 7o.

For angles > 35o The loss 
through this expander can become 
greater than that through a sudden 
expansion.

separation point (분리점)

Separation of boundary layer in 
diverging channel

* Minimizing expansion and contraction losses

. Contraction loss can be nearly eliminated by reducing the cross section gradually.

In this case, separation & vena contracta do not occur.

. Expansion loss can also be minimized by enlarging the cross section gradually
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* Flow through parallel plates (Prob. 5.1 & 5.3과연관)

In laminar flow between infinite parallel plates,
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Related problems: 

(Probs.) 5.4, 5.8, 5.10, 5.12, 5.13, 5.17, 5.20 and 5.21


