# **Chapter 10. Heat Transfer by Conduction**

### Three heat flow mechanisms:



## **Basic Law of Conduction**

\* Fourier's law

$$\frac{dq}{dA} = -k\frac{dT}{dx} \qquad \qquad \text{--- Eq. (10.1)}$$

q: rate of heat flowA: surface areaT: temperaturex: distance normal to surfacek: thermal conductivity

General expressions of Fourier's law in all three directions:

$$\frac{dq}{dA} = -k \left( \frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z} \right) = -k \nabla T$$



\* Thermal conductivity (열전도도) k

Fourier's law에서의 비례상수  $\leftarrow$  Newton's law에서의 점도에 해당 Rate of heat flow (열흐름속도) q 의 단위: W or Btu/h dT/dx의 단위: °C/m or °F/ft  $\therefore$  열전도도 k 의 단위: W/m·°C or Btu/ft·h·°F

For small ranges of T, k = constant

For larger *T* ranges, k = a + bT

|                                               | solids: 17 W/m·°C for stainless steel                        |                      |
|-----------------------------------------------|--------------------------------------------------------------|----------------------|
| $k$ values $\langle$                          | 415 W/m·⁰C for silver                                        |                      |
|                                               | 0.35 W/m·°C for glass                                        |                      |
|                                               | liquids: 0.5 W/m·°C for water<br>gases: 0.024 W/m·°C for air |                      |
|                                               | gases: 0.024 W/m·°C for air                                  |                      |
| Solid having low $k \rightarrow$ "insulators" |                                                              | ex) polystyrene foam |



# **Steady-State Conduction** (정상상태 열전도)

 $\leftarrow$  neither accumulation nor depletion of heat within the slab q is constant along the path of heat flow



USW 수원대학교

#### Ex. 10.1) A layer of pulverized cork (insulator)



*q* (the rate of heat flow) ?

$$q = Ak \frac{\Delta T}{B} = 2.32 \times \left(0.036 + 43.3 \times \frac{0.055 - 0.036}{93.3 - 0}\right) \times \frac{77.8}{0.152}$$
  
= 53.3 W



### \* Compound resistances in series





In steady heat flow,

$$q_A = q_B = q_C$$

$$\therefore \frac{q}{A} = \frac{\Delta T}{B_A / k_A + B_B / k_B + B_C / k_C} = \frac{\Delta T}{R_A + R_B + R_C} = \frac{\Delta T}{R}$$

&

$$\frac{q_A}{A} = \frac{q_B}{A} = \frac{q_C}{A} = \frac{q}{A} \implies \frac{\Delta T}{R} = \frac{\Delta T_A}{R_A} = \frac{\Delta T_B}{R_B} = \frac{\Delta T_C}{R_C}$$



Ex. 10.2) A flat furnace wall constructed of a layer of Sil-o-cel brick backed by a common brick

Sil-o-cel common  

$$T_1 = 760 \text{ °C}$$
 brick  
 $k_A$   $k_B$   
 $T_x$   
 $k_B = 1.38 \text{ W/m °C}$   
(a) Heat loss through the wall,  $q = ?$   
Assume  $A = 1 \text{ m}^2$   
 $B_A = B_B = 0.114 \text{ m} 0.229 \text{ m}$   
 $R_A = \frac{B_A}{k_A} = 0.826 \quad R_B = \frac{B_B}{k_B} = 0.159$   
 $R = R_A + R_B = 0.985 \text{m}^2 \text{ °C/W} \quad \Delta T = 683.4 \text{ °C}$   
 $\therefore q/A = 683.4/0.985 = 693.81 \text{ W/m}^2 \quad q = 693.81 \text{ W/m}^2$ 

(b) Temperature of the interface between the two bricks

 $\Delta T / R = \Delta T_A / R_A$  683.4/0.985 =  $\Delta T_A / 0.826$   $\Delta T_A = 573.08 \,^{\circ}\text{C}$   $\therefore$   $T_x = T_1 - \Delta T_A = 186.9 \,^{\circ}\text{C}$ 

(c) In case that the contact between the two bricks is poor and the contact resistance is 0.088 m<sup>2</sup> °C/W, the heat loss q = ?

$$R = 0.985 + 0.088 = 1.073 \,\mathrm{m^2 \ ^oC/W}$$
  $\therefore q = \Delta T / R = 636.9 \,\mathrm{W}$ 



\* Heat flow through a cylinder



cylinder length: L

 $q = -k\frac{dT}{dr}(2\pi rL)$  $\int_{r_{i}}^{r_{o}} \frac{dr}{r} = \frac{-2\pi Lk}{q} \int_{T_{i}}^{T_{o}} dT \implies q = \frac{k(2\pi L)(T_{i} - T_{o})}{\ln(r_{o}/r_{i})}$  $\frac{k\overline{A}_L(T_i - T_o)}{\int r_o - r_i}$ 

1.00 0.95 0.90  $\frac{\bar{r}_l}{\bar{r}_o}$ 0.85 0.80 0.75 0.70 2 3 5 6 7 8 4 9 10  $\frac{r_0}{r_i}$ 



: logarithmic mean radius (로그평균반지름)

Logarithmic mean radius  $\bar{r}_L$  vs. arithmetic mean radius  $\bar{r}_a$ 



Ex. 10.3) A tube of 60 mm OD insulated with a 50 mm silica foam layer and a 40 mm cork layer

Calculate the heat loss q of pipe in W/m ?





### Unsteady-State Conduction (비정상상태 열전도)

Heat input – Heat output = Accumulation of heat





*cf.*) *D* : mass diffusivity

v: kinematic viscosity

Solutions are available for certain simple shapes, such as infinite slab (Eq. 10.20), infinitely long cylinder (Eq. 10.21) and sphere (Eq. 10.22).

 $\rightarrow$  Fig. 10.5





Unsteady-state conduction in solid slab



**Fig. 10.5.** Average temperature during unsteady-state hearing or cooling of a large slab, an infinitely long cylinder, or a sphere.

Related problems: (Probs.) 10.1, 10.2, 10.3, 10.9 and 10.12

