Chapter 10. Heat Transfer by Conduction

Three heat flow mechanisms:

Basic Law of Conduction

*** Fourier's law**

$$
\frac{dq}{dA} = -k \frac{dT}{dx}
$$
 --- Eq. (10.1)

q : rate of heat flo w *A* : surface area *T* : temperature *x* : distance normal to surface *k* : thermal conductivity

General expressions of Fourier's law in all three directions:

$$
\frac{dq}{dA} = -k \left(\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z} \right) = -k \nabla T
$$

dy

*** Thermal conductivity (**열전도도**)** *k*

Fourier's law에서의 비례상수 $\frac{dq}{dt} = -k\frac{dT}{dt}$ Å Newton's law에서의 점도에 해당 Rate of heat flow (열흐름속도) *^q* 의 단 위: W or Btu/h dT/dx 의 단위: ºC/m or ºF/ft ∴ 열전도도 *k* 의 단위: W/m·ºC or Btu/ft·h·ºF *dx* $\frac{dq}{dA} = -k \frac{dT}{dx}$ $\frac{dq}{dx} = -$

For small ranges of *T*, *k* = constant

For larger *T* ranges, *k* = a + b *T*

Steady-State Conduction (정상상태 열전도)

 \leftarrow neither accumulation nor depletion of heat within the slab *q* is constant along the path of heat flow

Ex. 10.1) **A layer of pulverized cork (insulator)**

q (the rate of heat flow) ?

$$
q = Ak\frac{\Delta T}{B} = 2.32 \times \left(0.036 + 43.3 \times \frac{0.055 - 0.036}{93.3 - 0}\right) \times \frac{77.8}{0.152}
$$

= 53.3 W

*** Compound resis tances in series**

In steady heat flow,

$$
q_A = q_B = q_C
$$

$$
\therefore \frac{q}{A} = \frac{\Delta T}{B_A / k_A + B_B / k_B + B_C / k_C} = \frac{\Delta T}{R_A + R_B + R_C} = \frac{\Delta T}{R}
$$

 $\&$

$$
\frac{q_A}{A} = \frac{q_B}{A} = \frac{q_C}{A} = \frac{q}{A} \Rightarrow \frac{\Delta T}{R} = \frac{\Delta T_A}{R_A} = \frac{\Delta T_B}{R_B} = \frac{\Delta T_C}{R_C}
$$

Ex. 10.2) A flat furnace wall constructed of a layer of Sil-o-cel brick backed by a common brick

$$
T_1 = 760 \frac{c}{c} \begin{cases} \text{kick} \\ k \end{cases} \quad \text{brick} \\ \text{y,} \\ k \end{cases} \quad k_B = 1.38 \text{ W/m }^{\circ}\text{C}
$$
\n(a) Heat loss through the wall, $q = ?$
\n
$$
T_x
$$
\n
$$
B_A = \begin{cases} B_B = \begin{cases} B_B = \end{cases} \quad R_A = \frac{B_A}{k_A} = 0.826 \quad R_B = \frac{B_B}{k_B} = 0.159 \\ R = R_A + R_B = 0.985 \text{m}^2 \text{ }^{\circ}\text{C/W} \quad \Delta T = 683.4 \text{ }^{\circ}\text{C} \\ \therefore q/A = 683.4/0.985 = 693.81 \text{ W/m}^2 \quad q = 693.81 \text{ W}
$$

(b) Temperature of the interface between the two bricks

 $\Delta T_A = \Delta T_A/R_A$ 683.4/0.985 = ΔT_A /0.826 ΔT_A = 573.08 °C $\therefore T_r = T_1 \Delta T_A$ = 186.9 °C $\Delta T/R = \Delta T_A/R_A$ 683.4/0.985 = $\Delta T_A/0.826$ $\Delta T_A = 573.08 \text{ °C}$ $\therefore T_x = T_1 \text{-} \Delta T_A = 186.9 \text{ °C}$

(c) In case that the contact between the two bricks is poor and the contact resistance is 0.088 m² °C/W, the heat loss $q = ?$

$$
R = 0.985 + 0.088 = 1.073 \,\text{m}^2 \,\text{°C/W} \quad \therefore \quad q = \Delta T / R = 636.9 \,\text{W}
$$

1.00

0.95

0.90

 0.80

0.75

 0.70

 $\overline{2}$

3

 $\overline{4}$

5

 $\frac{r_o}{r_i}$

 $rac{\bar{r}_l}{\bar{r}_c}$ 0.85

*** Heat flow through a cylinder**

cylinder length: *L*

Logarithmic mean radius \bar{r}_L vs. arithmetic mean radius \bar{r}_a

Ex. 10.3) A tube of 60 mm OD insulated with a 50 mm silica foam layer and a 40 mm cork layer

Calculate the heat loss *q* of pipe in W/m ?

Unsteady-State Conduction (비정상상태 열전도)

Heat input – Heat output = Accumulation of heat

cf.) *D* : mass diffusivity

 ν : kinematic viscosity

Solutions are available for certain simple shapes, such as infinite slab (Eq. 10.20), infinitely long cylinder (Eq. 10.21) and s phere (Eq. 10.22).

 \rightarrow Fig. 10.5

Unsteady-state conduction in solid slab

Fig. 10.5. Average temperature during unsteady-state hearing or cooling of a large slab, an infinitely long cylinder, or a sphere.

Related problems: (Probs.) 10.1, 10.2, 10.3, 10.9 and 10.12

