Chapter 11. Principles of Heat Flow in Fluids

Heat-Exchange Equipment

A: tubes; B_1 , B_2 : tube sheets; *C*: shell; D_1 , D_2 : channels; E_1 , E_2 : channel covers; F : vapor inlet; *G*: condensate outlet; *H*: cold-liquid inlet; *J*: warm-liquid outlet; *K*: noncondensed gas vent.

Fig. 11.2. Temperature-length curves for condenser.

 Δ *pproach*: terminal *T* difference, ΔT_1 , ΔT_2 $\boldsymbol{Range}\colon T$ change of a fluid, $T_{cb}\text{-}T_{ca},\,T_{ha}\text{-}T_{hb}$

Fig. 11.3. Double-pipe heat exchanger.

*** Countercurrent flow (or counter flow)** 향류

T wo fluids enter at different ends of HX.

"pass in opposite directions.

approaches: $\Delta T_1, \ \Delta T_2$ warm fluid range: *Tha - Thb* cold fluid range: *Tcb - Tca*

*** P arallel flows (or cocurrent flow)** 병류

Two fluids flow in the same direction.

cf.) cross flow 교차류

Energy Balances

In heat exchangers, W_s, E_p & $E_k \approx 0$.

For the warm fluid, $\dot{m}_h (H_{hb} - H_{ha}) = q_h < 0$

For the cold fluid, $\dot{m}_c (H_{cb} - H_{ca}) = q_c > 0$

 $q_c = -q_h$ (\leftarrow The heat lost by the warm fluid is gained by the cold fluid)

∴ $\dot{m}_h (H_{ha} - H_{hb}) = \dot{m}_c (H_{cb} - H_{ca}) = q$

: overall enthalpy balance

For a condenser,

$$
H_{ha} = \lambda + c_{ph}T_{ha}, \quad H_{hb} = c_{ph}T_{hb}, \quad H_{ca} = c_{pc}T_{ca}, \quad H_{cb} = c_{pc}T_{cb}
$$

\n
$$
\therefore \dot{m}_h \lambda + c_{ph}(T_{ha} - T_{hb}) = \dot{m}_c c_{pc}(T_{cb} - T_{ca})
$$

\n
$$
\uparrow
$$

\n
$$
\uparrow
$$

\n
$$
\uparrow
$$

\nspecific heat of cold fluid
\nspecific heat of the condensate

Heat Flux and Heat-Transfer Coefficients

- . Heat flux: the rate of heat transfer per unit area
- . Average stream temperature (or mixing-cup temperature):

average temperature of fluid stream

*** Overall heat-transfer coefficient (**총괄 열전달계수**)** *U*

Driving force: $T_h - T_c$ (overall local temperature ΔT)

$$
\frac{dq}{dA} \text{(local flux)} \propto \Delta T
$$
\n
$$
\therefore \frac{dq}{dA} = U \Delta T = U(T_h - T_c)
$$
\n
$$
\text{local overall heat-transfer coefficient}
$$

$$
\frac{U_o}{U_i} = \frac{dA_i}{dA_o} = \frac{D_i}{D_o}
$$
\n
$$
\begin{cases}\nU_o: \text{ overall heat-transfer coefficient based on outside surface area} \\
U_i: \text{ while surface area}\n\end{cases}
$$

*** Integration over total surface**

Integration of Eq. (11.9) to the entire area of a heat exchanger

Assumptions:

- 1) *U* --- constant
- 2) *cpc, cph* --- constant
- 3) heat exchange with ambient --- negligible
- 4) flow --- steady, either parallel or countercurrent

T vs. *q* in countercurrent flow (가정 2 와 4 하에서의 그래프)

 T_c & T_h vary linearly with q . (가정 2와 4 적용) \rightarrow ΔT .

$$
\frac{d(\Delta T)}{dq} = \frac{\Delta T_2 - \Delta T_1}{\boxed{q_T}} \longrightarrow \text{ J} \geq \text{ J} \text{ constant}
$$

rate of heat transferin entire heat exchanger

$$
dq = U\Delta T dA \quad \text{or} \quad \Box H \Box \Box H \Box
$$
\n
$$
\frac{d(\Delta T)}{U\Delta T dA} = \frac{\Delta T_2 - \Delta T_1}{q_T}
$$
\n
$$
\overline{\Delta T} = \frac{1}{2} \frac{\Delta T_2}{\Delta T} \quad \text{or} \quad \Delta T
$$
\n
$$
\int_{\Delta T_1}^{\Delta T_2} \frac{d(\Delta T)}{\Delta T} = \frac{U(\Delta T_2 - \Delta T_1)}{q_T} \int_{0}^{A_T} dA
$$
\n
$$
\therefore q_T = U A_T \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)} = U A_T \overline{\Delta T_L}
$$

logarithmic mean temperature difference (**LMTD**):

$$
\frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)}
$$

*** Individual heat-transfer coefficient (**개별 열전달계수**)** *h*

U depends on many variables.

Consider a specific point in double-pipe heat exchanger

& Assume ϵ turbulent flow

surface of tube – clear of dirt or scale

Individual heat-transfer coefficient, *h*

1/ *h*: thermal resistancee *cf.*) x_w/k for conduction

Fig. 11.8. *T* gradients in forced convection

. Heat transfer very near the wall occurs only by conduction.

$$
\frac{dq}{dA} = -k \left(\frac{dT}{dy}\right)_w \implies h = -k \frac{(dT/dy)_w}{T - T_w}
$$
\n
$$
\frac{hD}{k} = -D \frac{(dT/dy)_w}{T - T_w} \approx \frac{(dT/dy)_w}{(T - T_w)/D}
$$
\n
$$
\text{average } T \text{ gradient across the entire pipe}
$$
\n
$$
\text{Nu (Nusselt number)}
$$

: *the ratio of the total heat transferred to the heat by conduction*

. Another interpretation of the Nusselt number

If all the resistance to heat transfer is in a laminar layer of thickness *x*

in which heat transfer is only by conduction.

$$
\frac{dq}{dA} = \frac{k(T - T_w)}{x}
$$
\n
$$
h = \frac{k}{x}
$$
\n
$$
Nu = \frac{hD}{k} = \frac{k}{x} \frac{D}{k} = \frac{D}{x}
$$
\n
$$
\therefore the ratio of the tube diameter to the equivalent thickness of the laminar layer
$$

*** Calculation of overall coefficients from individual coefficients**

From Fig. 11.8,
\n
$$
(T_h - T_{wh}) + (T_{wh} - T_{wc}) + (T_{wc} - T_c) = T_h - T_c = \Delta T
$$
\n
$$
= dq \left(\frac{1}{dA_i h_i} + \frac{\hat{x}_w}{dA_l \hat{x}_m} + \frac{1}{dA_0 h_o} \right)
$$
\ntube wall thickness thermal conductivity of wall.
\nHeat flux based on the outside area
\n
$$
\frac{dq}{dA_o} = \frac{T_h - T_c}{\frac{1}{h_i} \left(\frac{dA_o}{dA_i} \right) + \frac{x_w}{k_m} \left(\frac{dA_o}{dA_L} \right) + \frac{1}{h_o}}
$$
\n
$$
= \frac{T_h - T_c}{\frac{1}{h_i} \left(\frac{D_o}{D_i} \right) + \frac{x_w}{k_m} \left(\frac{D_o}{\overline{D_L}} \right) + \frac{1}{h_o}}
$$
\n
$$
\therefore \frac{1}{U_o} = \frac{D_o + x_w}{D_i h_i} + \frac{x_w}{k_m} \frac{D_o}{\overline{D_L}} + \frac{1}{h_o}
$$
\n
$$
\frac{1}{U_o} = \frac{D_o - D_i}{D_i h_i} + \frac{x_w}{k_m} \frac{D_o}{\overline{D_L}} + \frac{1}{h_o}
$$

' g

Fig. 11.8. *T* gradients

. Heat flux based on the inside area

앞과 마찬가지로 정리해 보 면,

$$
\therefore \frac{1}{U_i} = \frac{1}{h_i} + \frac{x_w}{k_m} \frac{D_i}{\overline{D}_L} + \frac{D_i}{D_0 h_0}
$$

. Overall temperature drop *UT* 1 (ΔT) \propto -

. Temperature drop in two fluids & wall ∞ individual resistances

o o $w \wedge m \wedge \psi_o \wedge \nu_L$ *w* ϕ *i* ν _{*i*} ν _{*i*} *i* ∂ _{*o*} D_0 / D_i *h_i* (x_w / k_m) (Q _{*o}* / D_L) 1/*h*_i</sub> *T* x_w/k_m) $\langle D_o/D \rangle$ *T* $D'_h/D_i h$ *T U T* $1/U_o$ $D'_0/D_i h_i$ $(x_w/k_m)(D_o/D_l)$ 1/ $=\frac{\Delta}{\sqrt{2}}$ $=\frac{\Delta}{\sqrt{2\pi}}$ $=\frac{\Delta}{\sqrt{2}}$ $\frac{\Delta T}{\Delta T_i} = \frac{\Delta T_i}{D / D_i h_i} = \frac{\Delta T_w}{(r_l / k_l) \Delta D_l / \overline{D}_i} = \frac{\Delta T_o}{1 / h}$ T drop through outside fluid *T* drop through inside fluid *T* drop through metal wall Eq. (10.13)과 같 은 resistance 형태: *CC BB A* $\frac{A}{A} = \frac{\Delta I}{R_B} = \frac{\Delta I}{R}$ *T R T R T R* $\frac{T}{T} = \frac{\Delta T_A}{T} = \frac{\Delta T_B}{T} = \frac{\Delta T_B}{T}$ $=\frac{\Delta}{\sqrt{2}}$ $=\frac{\Delta}{\sqrt{2}}$ ∆ . Overall resistance, *Loo mw i i o o*^{*o*} U_{o} $D_{i}h_{i}$ k_{m} \overline{D}_{I} h *D k x* $D_i h$ *D U R* $=\frac{1}{-}=\frac{D_o}{+}\frac{x_w}{+}\frac{D_o}{-}+\frac{1}{-}$

*** F ouling factors (**오염계수**)**

Actually, heat-transfer surfaces do not remain clean – Scale, dirt & solid deposits form.

 \rightarrow provide additional resistances to heat flow

 \rightarrow reduce the overall coefficient

 h_{di} , h_{do} : the fouling factors for the scale deposits on the inside & outside tube surfaces

Then, --- Eq. (11.37) and--- Eq. (11.38) $(D_{\alpha}/D_{i}h_{di}) + (D_{\alpha}/D_{i}h_{i}) + (x_{w}/k_{m})(D_{\alpha}/D_{L}) + (1/h_{\alpha}) + (1/h_{do})$ 1 o^{\prime} $D_i n_{di}$) \neg $(D_o^{\prime} D_i n_i)$ \neg (λ_w / κ_m) $(D_o^{\prime} D_L)$ \neg $(1 / n_{o})$ \neg $(1 / n_{do})$ $\frac{\partial}{\partial P}$ $(D_o/D_i h_{di}) + (D_o/D_i h_i) + (x_w/k_m)(D_o/\overline{D}_I) + (1/h_o) + (1/h_i)$ $U_o = \frac{1}{(D_o/D_i h_{di}) + (D_o/D_i h_i) + (x_w/k_m)(D_o/\overline{D}_I) + (1/h_o) + (1/h_o/\overline{D}_I)}$ = $(1/h_{di}) + (1/h_i) + (x_w/k_m)(D_i/D_i) + (D_i/D_0h_o) + (D_i/D_0h_{do})$ 1 di) τ (1/ n_i) τ (λ_w / κ_m)(D_i / D_L) τ (D_i / D_o n_o) τ (D_i / D_o n_{do} $i = \frac{1}{(1/h_{di}) + (1/h_i) + (x_w/k_m)(D_i/\overline{D}_I) + (D_i/D_0h_o) + (D_i/D_0h_o)}$ $U_i = \frac{1}{(1/h_{di}) + (1/h_i) + (x_w/k_m)(D_i/\overline{D}_I) + (D_i/D_0h_o) + (1/h_i/\overline{D}_I)}$ =

Fouling factors --- *a safety factor for design*

Ex. 11.1) MeOH flowing in the inner pipe of a double-pipe exchanger is cooled with water.

What is the overall coefficient, based on the outside area of the inner pipe ? $(\leq, U_0=?)$

(Ans.)
\n
$$
\overline{D}_L = \frac{D_o - D_i}{\ln(D_o/D_i)} = \dots = 0.0983 \text{ft}
$$
\n
$$
\underline{U}_o = \leftarrow \text{from Eq.}(11.37)
$$
\n
$$
= 80.9 \text{Btu/ft}^2 \cdot \text{h}^0 \text{F}
$$

*** Special cases**

In the special case that

Fouling effects are negligible

Metal wall is very thin (i.e., large-dia meter thin-walled tube)

 \rightarrow $D_o/D_i \cong 1$

Then,

$$
U_o = U_i = \frac{1}{1/h_o + x_w/k_m + 1/h_i}
$$

Related problems: (Probs.) 11.1, 11.2 and 10.3.

