Designs for experimental studies

% Objectives
* Screening studies
: discovering which of a large number of variations affect response
- Empirical model building studies
: true model unknown. Use approximate models, y = f(x,, x,, ..., X;.)

+ 2kfactorial designs

Range of interest
(ex. Operating range)
\

*  Best 2 experiments? ' \

* Want to estimate of linear effect of x on y.
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22 factorial design

+ Two independent variables:
range

Temperature (T) 160°C ~ 180°C

Concentration (C) 20% ~ 40%

+ Study effect of T & C on yield y.

Two variables

. . L All possible combination
+ Design: 22 factorial in 2° =4 runs -~ of two levels of two variables

Two levels

+ & run the experiments:




22 factorial design (Cont.)

+ Main effects of T & C

\ Main effect of C
40% ({54 68 \

T Two measures of effect of C
Conc 54 —60 = -6
| 68 —72=-4
20% 60 7 avg. =-5
160°C — Temp. — 180°Cx

Main effect of T

Two measures of effect of T
68 —54 =14
72-60=12

avg. =13 ¥ 13 %yield/20 °C change in T




22 factorial design (Cont.)

+ Interaction between T & C
+ Do variables T & C act independent on y?
+ Or, is effect of T (or C) same at both levels of C (or T)?
+ If effect is different > T x C interaction.

Visualize this with an interaction plot.

5 Lines are roughly parallel.
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160°C Temp. 180°C 20% Conc. 40%




22 factorial design (Cont.)

+ But change 68 to 85

Main effect of C

40% 54 85

1 Two measures of effect of C
Conc. 54-60=-6

| 85-72=13
20% 60 72

Lines in interaction plots will be far from being
160°C — Temp. — 180°C

parallel > Large interaction between T & C

Main effect of T 85 / 68

Two measures of effect of T 72 72

8554 =31 60 60 \
72 -60=12 o4 54

160°C  Temp. 180°C 20% Conc. 40%




22 factorial design (Cont.)

+ Analysis by least squares

+ Design matrix (condition) & experimental results

T C
160 20 6y0 % Center: usually current condition
180 20 72
160 40 54
180 40 68

+ Transform x variable (T & C) to scaled variables ¢ why?: remove scale effect

_variable —centerpoint

Range/ 2
X, = T-170°C Range of x;’s
10 -1 to +1
X, = C_lf)()% -1 to +1



22 factorial design (Cont.)

+ Design matrix becomes

“Cube plot”
+1 .
X, X,
-1 -1
+1 -1 x2
-1 +1
+1
+1 +1 1 [} x1 )
=a, + +a, X, + Interaction term
+ Fit model: Y= % T AN T ai@
In matrix-vector notation,
y = Xa
1 X, X, XX,
(60 | ) a, | | 1
12 "
= a= =
y 54 a,
| 68 | a, |




22 factorial design (Cont.)

+ Regression coefficients (usually from S/W)
a=(X"X)" X'y
Columns of X : orthogonal (i.e., X;-X; =X X; =0 )

> D XX =D XX =D X (X,%) =D XX, DX (% %,) =D X, (%,X,) =0

X'y =

o O O b~
o o ~ O
o ~ O O




22 factorial design (Cont.)

+ le., a = Z X z/‘ Each @, can be calculated
Z X independently.
e.g., a, = Y1+YzZY3+Y4

a; = effect of changing variable x; from o to +1.

+ Confidence interval of q;
o a; are uncorrelated due to

Z X? orthogonality of design

var(a) = (XT X)_1 o = var(a) =

95% C.I &, 7, e, /0'2 /> %
95% C.I & %t,(0s4/S?/ D X (when o unknown)

Estimating s2 : (1) from historical database

(2) replicates (corner points or center points)



23 factorial design

-~ 3variables

23

5 levels Qualitative variable

+ Three variables: T, C, and catalyst type (A and B)

v Denote: x, = -1 for catalyst A
= +1 for catalyst B

+ 23 factorial (= 8 runs): all combination of the 2 levels of the 3 variables.

X, X Xy Xg XX, X, Xg X, X, XXXy 3 i
Design +1 | 1| o1 | 1| 41 +1 11 1 Cube plot
Matrix, X S I I I B -1 1| 4+

+1 -1 +1 -1 -1 +1 1 +1

+1 +1 +1 -1 +1 -1 -1 -1

+1 -1 -1 +1 +1 -1 -1 +1

+1 +1 -1 +1 -1 +1 1 1

+1 -1 +1 +1 -1 -1 +1 -1

+1 +1 +1 +1 +1 +1 +1 +1




23 factorial design (cont.)

+ Analysis by least squares
+ Fit model:
y - aO + a:I.XZI. + a2X2 + a3x3 + a12X1X2 + a13XZI.X3 + a‘23)(2)(3 + aZI.23X1X2X3

In matrix-vector notation,
y = Xa
+ Again, by least squares

a=(XTX)_1 X'y=a = 2%y

2 X

Clofa; var(a)= (XTX)_l 0% = var(a) = <

2%
95% C.I @ %7, 5p4/07 /> %
95% C.I & %1, 30,64/S°/ D % (When o unknown)




ok factorial design

+ Desirable features of factorial designs
+ Othogonal - easy calculations
- uncorrelated estimates q;
+ Good variation in all variables
+ Efficient use of all data points
+ The only way to discover interactions between variables

+ Allows experiments to be performed in blocks

+ Allows designs of increasing order to be build up sequentially




Design for 27 order models

+ If 15t order + interaction model exhibits “Lack of fit”

> Include X/, X;,-- terms g N
But we need more than 2 level designs. ) ’
- Central composite design or 3 level factorials . | )
¢ Central composite design (k=2) x>
(1) Start with 2k design with center points WO -
(2) Add vertices of star (for k=2, o = /2 ) 1 1
(3) Run experiments & analysis +11 +11 9 runs
. o | | st

“Cube plot” I__'Il
@ o]

EEE

(2)

design (k = 2)




Design for 224 order models (cont.)

+ Values of o Cube plot for 3 variables (factors)
®
k design o
2 22 J2 ( ._/ /o ‘ 15 runs
For central
3 27 V3 ¢ / .1 7 composite
4 24 J4 | « : /i’ ' design (k = 3)

+ 3 level factorial

3 2 variables at all combinations of 3 levels
3 277 runs for 3 variables L | |

% Full quadratic model (assume 123 interaction is negligible.)

2 2 2
y = a0 + aixl + a2)(2 + a3X3 + a12)(1)(2 + a13X1X3 + a‘23X2X3 + a11X1 + a22)(2 + a‘33x3

Allows for approximation of many response.




Design for 224 order models (cont.)

% A t-statistic for curvature

Average y of corner points \ / Average y of center points
Ye —

curvature
1
Pure error calculated n

from center points

# of center points
# of corner points

Minitab uses ANOVA for testing curvature when center point replicates

exist.






