
Simple least squares

Summary

Model form: y = a0 + a1x + e

becomes minimizes  where

Rearranging and solving for a0 and a1

Question: what if our model we want to find is non-linear?

Ex. Activation energy in rate constant

 Linearize !
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Linearization

Want to model non-linear relationships between independent (x) and 

dependent (y) variables.

1. Make a simple linear model through a suitable transformation.

y = f(x) + e  y = a0 + a1x + e

2. Use previous results (simple least squares)

※Caution: transformation also changes P.D.F of variables (and errors)

We will discuss about this in model assessment.
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Linearization (Cont.)
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Polynomial regression

For quadratic form

Sum of squares 

Again, Sr has a parabolic shape w.r.t a0, a1, and a2. with plus signs of 
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Polynomial regression (Cont.)

Rearranging the previous equations gives

the above equations can be solved easily. (three unknowns and three 

equations.)

For general polynomials

From the results of two cases (y = a0 + a1x & y = a0 + a1x + a2x2)

we need to solve (m+1) linear algebraic equations for (m+1) parameters.
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Multiple least squares

Consider  when there are more than two independent variables, x1, x2, 

…, xm.  regression plane.

For 2-D case, y = a0 + a1x1 + a2x2.

Again, Sr has a parabolic shape w.r.t a0, a1.
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Multiple least squares (Cont.)

Rearranging and solve for a0, a1 and a2 gives

For an m-dimensional plane, 

Same as in general polynomials,

we need to solve (m+1) linear algebraic equations for (m+1) parameters.

2010-11-03 공정 모형 및 해석, 유준©  2010 28

exaxaxaay mm  22110

0 1

0r r r

m

S S S

a a a

  
   

  



General least squares

The following form includes all cases (simple least squares, polynomial 

regression, multiple regression)

Ex. Simple and multiple least squares

polynomial regression

Same as before, 

we need to solve (m+1) linear algebraic equations for (m+1) parameters.
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Quantification of errors
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Quantification of errors (Cont.)
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Quantification of errors (Cont.)

Coefficients of determination, R2
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Quantification of errors (Cont.)

Warning! : R2 ≈ 1 does not guarantee that the model is adequate, 

nor the model will predict new data well. 

It is possible to force R2 to be one by adding as many terms as there are 

observations.

Sr can be big when variance of random error is large.

(Usual assumption on error  is  that error is random is unpredictable)

Practice using Minitab

(1) Wind tunnel example with higher polynomials

(2) Simple regression with increasing random noise

2010-11-03 공정 모형 및 해석, 유준©  2010 33



Confidence intervals - coefficients

Coefficients in the regression model have confidence interval.

Why? They are also statistics like     & s. That is, they are numerical 

quantities calculated in a sample (not entire population). They are 

estimated values of parameters.
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Confidence intervals – coefficients (cont.)

Matrix representation of GLS
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Confidence intervals – coefficients (Cont.)

Example

Fitting quadratic polynomials to five data points
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Can you solve this problem?

Three unknowns

Five equations



Confidence intervals – coefficients (Cont.)

Solutions

1. LU decomposition or other methods to solve L.A.E

2. Matrix inversion

computationally not efficient, but statistically useful
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Confidence intervals – coefficients (Cont.)

Matrix inversion approach

Denote             as the diagonal element of              

Confidence interval of estimated coefficients
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