
8. Steady-State Nonisothermal

Reactor Design
o Energy Balance 

- Overview of User Friendly Energy Balance 
Equations 

- Manipulating the Energy Balance, ∆HRx

o Reversible Reactions 

o Adiabatic Reactions 

o Applications of the PFR/PBR User Friendly Energy 
Balance Equations 

o Interstage Cooling/Heating 

o Evaluating the Heat Exchanger Term 

o Multiple Steady States 

o Multiple Reactions with Heat Effects
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o Ex 8-3 Liq.-phase isomerization reaction, p 490

- Normal butane, C4H10, isomerized in PFR

- Adiabatically, liquid phase, high pressure

• k1 = 31.1 h-1 at 360 K

• ∆H°Rx = -6,900J/mol n-butane, E = 65.7 kJ/mol

• KC = 3.03 at 60°C, CA0 = 9.3 mol/dm3 = 9.3 kmol/m3

• CPn-B = 141 J/mol K, CPi-B = 141 J/mol K

• CPn-P = 161 J/mol K

☞ VCSTR, VPFR = ? Processing 100,000 gal/day (163 

kmol/h) at 70%  conversion of mixture 90 mol % n-

butane and 10 mol % i-pentane (inert), T0 = 330 K 
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o Ex 8-3 Liq.-phase isomerization reaction 2

Sol)

- Mole balance

- Rate law
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o Ex 8-3 Liq.-phase isomerization reaction 3

Sol)

- Stoichiometry (liquid phase, v = v0)

- Combine

- Integration
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o Ex 8-3 Liq.-phase isomerization reaction 4

Sol)

- Energy balance

Given conditions  

- Rearrangement
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o Ex 8-3 Liq.-phase isomerization reaction 5

- Parameter evaluation

- Substituting for activation energy
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o Ex 8-3 Liq.-phase isomerization reaction 6

- Substituting for activation energy

- Substituting for heat of reaction
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o Ex 8-3 Liq.-phase isomerization reaction 7

- Rate law

- Equilibrium conversion

(1) PFR solution

- Start with X = 0.2
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o Ex 8-3 Liq.-phase isomerization reaction 8
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o Ex 8-3 Liq.-phase isomerization reaction 9



※ Review X

May/09 2011 Spring 11

o Ex 8-3 Liq.-phase isomerization reaction 10

- Calculation to get volume
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o Ex 8-3 Liq.-phase isomerization reaction 11

- Calculation to get volume with Matlab
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o Ex 8-3 Liq.-phase isomerization reaction 12
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o Ex 8-3 Liq.-phase isomerization reaction 13

- CSTR solution

Mole balance

Energy balance (for 40% conv.)



※ Review XIV

May/09 2011 Spring 15

o Ex 8-3 Liq.-phase isomerization reaction 14

- Calculation to get volume 

※ for PFR at X = 0.4, V = 1.15 m3
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o Ex 8-3 Liq.-phase isomerization reaction 15

- Reactor Sizing

- PFR: Shaded area is the volume
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o Ex 8-3 Liq.-phase isomerization reaction 16

- CSTR: Shaded area is the volume
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o Ex 8-3 Liq.-phase isomerization reaction 17

- CSTR: Shaded area is the volume
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o Adiabatic Equilibrium

- Conversion on Temperature

- Exothermic ΔH is negative

- Adiabatic Equilibrium temperature (Tadia) and 

conversion (Xe,adia)



4. Reversible Reactions V
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o Exothermic Adiabatic Equilibrium

- Determine maximum conversion

• entering temp. T0 to T01

☞ parallel shift
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o Ex 8-6, Calculating the adiabatic equilibrium T, p 513

- An elementary solid-catalyzed liquid-phase

• ∆H°A(298 K) = -40,000 cal/mol

• ∆H°B(298 K) = -60,000 cal/mol

• KC = 100,000 at 298 K

• CPA = 50 cal/mol K, CPB = 50 cal/mol K

(a) Xe = f(T)?

(b) at 300 K, pure A fed, Xe, T = ?

BA
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o Ex 8-6, Calculating the adiabatic equilibrium T 2

Sol)

- Rate law

- Equilibrium: -rA = 0

- Sotichiometry: (v = v0)

- Solving for X
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o Ex 8-6, Calculating the adiabatic equilibrium T 3

- Equilibrium constant: calculate ∆CP then Ke(T)

- Equilibrium constant with T
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o Ex 8-6, Calculating the adiabatic equilibrium T 4

- Equilibrium conversion



4. Reversible Reactions IX
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o Ex 8-6, Calculating the adiabatic equilibrium T 5

- Energy balance



4. Reversible Reactions X
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o Ex 8-6, Calculating the adiabatic equilibrium T 6



4. Reversible Reactions V
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o Adiabatic Equilibrium

- Endothermic ΔH is positive 

- Adiabatic Equilibrium temperature (Tadia) and 

conversion (Xe,adia)
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o Liquid phase reaction follows an elementary rate law

- The reaction is to be carried out in a PFR

(a) CRE algorithm, sketch the temperature as a function 

of conversion for an adiabatic endothermic reaction 

and an adiabatic exothermic reaction

- Mole Balance

- Rate Law

- Stoichiometry
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(a) CRE algorithm, 

- Combine

at equilibrium  –rA = 0
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(b) Write the adiabatic energy balance

- Exothermic Endothermic

Adiabatic Equilibrium

Temperature and Conversion
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(c) Adiabatic Temperature and Conversion Profiles

- Exothermic

- Endothermic
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(d) Energy Balance with Heat Exchange

(e) Constant Coolant Temperature Ta

- Exothermic 

- Endothermic
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(f) Variable Coolant Temperature Ta

- Exothermic

- Endothermic
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o Nonisothermal reactions

- The elementary isomerization of A to B was carried 

out in a packed bed reactor. The following profiles 

were obtained 

(a) The above profiles could represent an adiabatic 

system where the addition of inerts to the feed 

stream will increase conversion. T or F
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o Nonisothermal reactions

(b) If the reaction is irreversible, a small decrease in the 

flow rate will produce a small increase in the 

conversion. T or F

(c) If the reaction is reversible, a small decrease in the 

flow rate will produce a small increase in the 

conversion. T or F

(d) An increase in the feed temperature will increase 

the conversion. T or F

(e) A decrease in feed temperature will increase 

conversion. T or F
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o The elementary reaction in a packed bed reactor

(a) The above profiles could represent an adiabatic 

system where the addition of inerts will increase the 

conversion. T or F
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o The elementary reaction in a packed bed reactor 2

- Case 1 - Rapid Reaction: Equilibrium reached even 

at isothermal temperature, To

- Inerts ↑, exit temperature↓, ⇒ equilibrium conversion 

and the exit conversion ↑

- As more and more inerts continue to be added, the 

reactor approaches isothermal condition, To
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o The elementary reaction in a packed bed reactor 3

- Case 2 - Slow Reaction: Equilibrium not achieved at 

isothermal temperature, To
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o The elementary reaction in a packed bed reactor 4

(b) The above profiles could represent a system where 

decreasing the flow rate will increase the 

conversion. T or F

(c) The above profiles could represent a system where 

if the feed temperature is increased, one cannot tell 

from the above profiles whether or not the 

conversion will increase or decrease. T or F
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o Two PFR's (A and B) for the same reaction 

(a) Is the reaction exothermic or endothermic? 

(b) Is the reaction reversible or irreversible? 



7. Interstage Cooling/Heating I
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o Fixed Volume Exothermic Reactor

- Curve A

• reaction rate slow

• as temperature increases 

rate increases and therefore 

conversion increases.

- Curve B

• reaction rate very rapid

• virtual equilibrium reached in reaction conversion 

dictated by equilibrium conversion
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o Interstage Cooling:


