
2. Conversion and Reactor 

Sizing

oDefinition of Conversion, X

oBatch Reactor Design Equations

oDesign Equations for Flow Reactors

- CSTR. PFR, PBR

oApplications of the Design Equations for 

Continuous-Flow Reactors

oReactors in Series



1. Definition of Conversion (p.38)
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o Define conversion and space time. 

o Write the mole balances in terms of conversion for a 

batch reactor, CSTR, PFR, and PBR. 

o Size reactors either alone or in series once given the 

molar flow rate of A, and the rate of reaction, - rA, as a 

function of conversion, X

o General stoichiometric relationships

- Basis of calculation

• limiting reactant

o Conversion of species A
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1. Definition of Conversion II
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o The conversion X of species A in a reaction

- the number of moles of A reacted per mole of A fed, 

ie.

o What is the maximum value of conversion?

- Irreversible reactions, the complete conversion, i.e. 

X = 1.0.

- Reversible reactions, the equilibrium conversion, 

i.e. X = Xe
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2. Batch Reactor Design Equations I
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o General Mole Balance on System Volume V
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2. Batch Reactor Design Equations II
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o The number of  moles of A in the reactor after a 

conversion X

- No spatial variation

- Reactant A is disappearing

- Or   

)1(000 XNXNNN AAAA 

Vr
dt

dN
A

A 

Vr
dt

dN
A

A )(

dt

dX
N

dt

dN
A

A
00

Vr
dt

dX
N AA )(0 



2. Batch Reactor Design Equations III
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o For a constant volume batch reactor V = V0

- Constant volume batch reactor,

- Rearrangement

- Time t necessary to obtain a conversion X

dt

dC

dt

VNd

dt

dN

V

AAA 
)/(1 0

0

Vr

dX
Ndt

A

A


 0

A
A r

dt

dC


 


X

A

A
Vr

dX
Nt

0
0



3. Design Equations for Flow Reactor I
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o At steady state

- Rearrangement
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3. Design Equations for Flow Reactor II
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o For liquid phase system

FA0 = CA0v0

o For gas phase system

- Or

where CA0= entering concentration, mol/dm3

yA0= entering mole fraction of A 

P0= entering total pressure, e.g., kPa

PA0= yA0P0 = entering partial pressure of A, kPa

T0= entering temperature, K 

v0= volumetric flow rate 

R= ideal gas constant
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3. Design Equations for Flow Reactor III
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o CSTR

o PFR    
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3. Design Equations for Flow Reactor IV
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o PBR    
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Summary of Design Equations
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Reactor Design Equations Graph

Batch

CSTR

PFR

PBR

Vr
dt

dX
N AA 0  


X

A

A
Vr

dX
Nt

0
0

A

A

r

XF
V


 0

AA r
dV

dX
F 0  


X

A

A
r

dX
FV

0
0

AA r
dW

dX
F '

0   


X

A
A

r

dX
FW

0 '0

http://www.engin.umich.edu/~cre/fogler&gurmen/html/course/lectures/two/more4.htm


4. Applications of the Design Equations for 

Continuous-Flow Reactor I
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o 1st order dependence

• k is specific constant, ftn of only Temp.

CA0, entering concentration

- Rearrange
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4. Applications of the Design Equations for 

Continuous-Flow Reactor II
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o Reactor size of CSTR and PFR

- Raw data

- Manipulated
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4. Applications of the Design Equations for 

Continuous-Flow Reactor II
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o Reactor sizing

0

Plots for sizing CSTR and PFR
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5. Reactors in Series
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o Given -rA as a function of conversion, one can also 

design any sequence of reactors

Only valid if there 

are no side streams

- Consider a PFR between two CSTRs


