- 2. Estimate the area A_0 .
- 3. Let $\tau + d = A_0/K_p$ and estimate the area A_1 .
- 4. Then $\tau = 2.782 A_1/K_p$ and $d = A_0/K_p \tau$
- step 4 Once a FOPDT model is obtained, PID setting can be done based on a tuning rule in the next subsection.

Popular tuning rules are Quater-decay ratio setting and Integral error criterion-based setting.

1.5.3 FOPDT-BASED TUNING RULES

• The following PID tuning rules are applicable for FOPDT processes with $0.1 < d/\tau < 1$.

1/4 Decay Ratio Settings

• Z-N tuning for the FOPDT model.

Controller	K_c	T_I	T_D	
Р	$(au/K_p d)$			
PI	$0.9(au/K_p d)$	3.33d		
PID	$1.2(au/K_p d)$	2.0d	0.5d	

Integral Error Criteria-based Settings

• PID parameters which minimizes one of the following errorintegration criteria:

IAE =
$$\int_0^\infty |e(t)| dt$$

ISE = $\int_0^\infty e^2(t) dt$
ITAE = $\int_0^\infty t |e(t)| dt$

IAE Tuning Relations

Type of Input	Controller	Mode	A	В
Load	PI	Р	0.984	-0.986
		Ι	0.608	-0.707
Load	PID	Р	1.435	-0.921
		Ι	0.878	-0.749
		D	0.482	1.137
Set Point	PI	Р	0.758	-0.861
		Ι	1.02^{b}	-0.323
Set Point	PID	Р	1.086	-0.869
		Ι	0.740^{b}	-0.130^{b}
		D	0.348	0.914

Type of Input	Controller	Mode	A	В
Load	PI	Р	1.305	-0.959
		Ι	0.492	-0.739
Load	PID	Р	1.495	-0.945
		Ι	1.101	-0.771
		D	0.56	1.006
Set Point	PI	Р	-	-
		Ι	-	-
Set Point	PID	Р	-	-
		Ι	-	-
		D	-	-

ISE Tuning Relations

ITAE Tuning Relations

Type of Input	Controller	Mode	A	В
Load	PI	Р	0.859	-0.977
		Ι	0.674	-0.680
Load	PID	Р	1.357	-0.947
		Ι	0.842	-0.738
		D	0.381	0.995
Set Point	PI	Р	0.586	-0.916
		Ι	1.03^{b}	-0.165
Set Point	PID	Р	0.965	-0.855
		Ι	0.796^{b}	-0.147^{b}
		D	0.308	0.929

Design relation: $Y = A(d/\tau)^B$ where $Y = KK_c$ for P-mode, τ/τ_I for I-mode, and τ_D/τ for D-mode.

 b For set-point change, the design relation for I-mode is $\tau/\tau_{I}=A+B(d/\tau).$

Performance of 1/4-Decay Ratio Tuning

$$G(s) = \frac{e^{-s}}{3s+1}$$

Performance of Integral Error Criteria-based Tuning

$$G(s) = \frac{e^{-s}}{3s+1}$$

set-point change

1.5.4 DIRECT SYNTHESIS METHOD - IMC TUNING

- In the direct synthesis method, a desired closed-loop response is specified first for a given process model, and then the controller which satisfies the specification is determined.
- IMC(internal model control) deals with virtually the same problem but from somewhat different point of view.

Consider a closed-loop system.

Let the unit step response of the process look like

We want to design a controller which gives the following response to unit step change in set point.

$$y(s) = G_{cl}(s)r(s) = \frac{e^{-ds}}{\tau_c s + 1}r(s)$$

- Since the process has time delay of $d(\min)$, the closed-loop response should have at least $d(\min)$ of time delay.
- For zero offset error, the steady state gain of the closed-loop system is specified as unity.

G_c which satisfies the above objective ?

• From the block diagram, we have

$$y(s) = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)}r(s) = G_{cl}(s)r(s)$$
(*)

Solving for G_c gives

$$G_c(s) = \frac{1}{G(s)} \frac{G_{cl}(s)}{1 - G_{cl}(s)} = \frac{(\tau s + 1)/K_p}{\tau_c s - e^{-ds} + 1} \qquad --- \qquad (**)$$

When d is small,

$$e^{-ds} \approx 1 - ds$$

Therefore,

$$G_c(s) \approx \frac{(\tau s+1)/K_p}{(\tau_c s+d)s} = \left(\frac{\tau/K_p}{\tau_c+d}\right) \left\{1+\frac{1}{\tau s}\right\} \quad -- \text{ PI-type}$$

Remarks :

- Simple and easy, but requires a model (of fairly good quality).
- τ_c is de facto a tuning parameter. As τ_c gets small, faster speed closed-loop response (to set point change) but more sensitive to measurement noise as well as model error. Note that tuning is reduced to a *single* parameter. Hence it is somewhere between random tuning (two or three parameters) and using PID tuning table (no parameter).
- Using (*), we can design $G_c(s)$ for arbitrary G(s) and $G_{cl}(s)$ (but some restriction applies on the choice of G_{cl}). In this case, a more general type of controller other than PID is obtained. For example, (**) is in fact a Smith predictor equation.
- The following controller settings was derived for different process models based on the IMC-tuining rule.

Type of Model	$K_c K_p$	$ au_I$	$ au_D$
$\frac{K_p}{\tau s + 1}$	$\frac{\tau}{\tau_c}$	τ	
$\frac{K_p}{(\tau_1 s+1)(\tau_2 s+1)}$	$\frac{\tau_1 + \tau_2}{\tau_c}$	$ au_1 + au_2$	$\frac{\tau_1\tau_2}{\tau_1+\tau_2}$
$\frac{K_p}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau}{\tau_c}$	$2\zeta au$	$rac{ au}{2\zeta}$
$\frac{K_p(-\beta s+1)}{\tau^2 s^2 + 2\zeta \tau + 1}, \beta > 1$	$rac{2\zeta au}{ au_c+eta}$	$2\zeta au$	$rac{ au}{2\zeta}$
$\frac{K_p}{s}$	$\frac{1}{\tau_c}$		
$\frac{K_p}{s(\tau s+1)}$	$\frac{1}{ au_c}$		au
$\frac{K_p(-\beta s+1)}{\tau^2 s^2 + 2\zeta \tau + 1}, \beta > 1$ $\frac{K_p}{s}$ $\frac{K_p}{s(\tau s+1)}$	$\frac{2\zeta\tau}{\tau_c+\beta}$ $\frac{1}{\tau_c}$ $\frac{1}{\tau_c}$	$2\zeta\tau$	$rac{ au}{2\zeta}$

IMC-based PID Controller Settings