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� In a pulp digester, relate the liquor concentrations and temperature to

the wood composition (e.g., Kappa Number) of the product.

1.5.2 THE METHOD OF LEAST SQUARES

What Is It?

The most widely used is the method of least squares. The least squares

method is particularly powerful when one wishes to build a linear prediction

model of the form

ŷ = Ax (1.47)

With N data points, we can write

�
y(1) � � � y(N)

�
| {z }

Y

= A
�
x(1) � � � x(N)

�
| {z }

X

+
�
e(1) � � � e(N)

�
| {z }

E

(1.48)

The last term represents the prediction error (for the prediction model

ŷ = Ax) for the N available data points.

)()(ˆ iAxiy =

p

N

n

N

x(1)...........x(N)

y(1)...........y(N)

   (1)...........   (N)ŷŷ

e(1)............e(N)

A reasonable criterion for using A is

min
A
f
NX
i=1

eT (i)e(i) = kY �AXk2fg (1.49)
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The solution to the above is

A = Y XT (XXT)�1 (1.50)

Statistical Interpretation

One can develop the least squares solution from the following statistical

argument. Suppose the underlying system (from which the N data set was

generated) is

y = Ax + " (1.51)

where " is a zero-mean, Gaussian random variable vector (covering for the

noise and other randomness in the relationship between x and y). Assume

also that x is a Gaussian vector. Then, y is also Gaussian due to the

linearity. Then,

Efyjxg = �y + covfy; xgcov�1fx; xg(x � �x) (1.52)

Since x and y are both mean-centered variables, �x = 0 and �y = 0. We now

approximate the covariances using N data points available to us.

cov(y; x) � Ryx =
1

N

NX
i=1

y(i)xT (i) (1.53)

cov(y; x) � Rx =
1

N

NX
i=1

x(i)xT (i) (1.54)

Hence,
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0
@ 1

N
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0
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XXT)�1x

(1.55)

Note that the above is the same as the predictor that results from the

method of least squares.
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1.5.3 LIMITATIONS OF LEAST SQUARES

Possibility of Ill-Conditioning

Recall the least squares solution

ŷ = Y XT (XXT)�1x

= RyxR
�1
x x

(1.56)

Since Rx is a symmetric, positive (semi)-de�nite matrix, it has the

decomposition in the form of

R�1x =
�
v1 � � � vn

�
2
666664

1

�2
1

. . .
1

�2n

3
777775

2
666664
vT1
...

vTn

3
777775 (1.57)

In the case that the x data are highly correlated, �1 � �n and some of �'s

will be very small (in a relative sense).

Implication of Ill-Conditioned Information Matrix

This has the following implications.

� Possibility of Arti�cially High Gains Due to Poor Signal to Noise Ratio

Note that Ryx and Rx are only approximations of the covariance

matrices based on N data points. Due to the error in the data, they

both contain errors. When 1

�2
i

's are large, errors in Ryx can get

ampli�ed greatly leading to a bad predictor (e.g., a predictor with

arti�cially high gains).

� Sensitivity to Outliers and Noise

Also, even if the covariance matrices were estimated perfectly, the

prediction can still be vulnerable to errors in the x data due to the

high gain.

� Statistical Viewpoint
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Rx (actually XXT ) is called information matrix. �i represents the

amount of information contained in the data X for a particular linear

combination of x (given by vTi x). Hence, small �i means small amount

of information. Naturally, extracting the correlation between vTi x and

y from the very small amount of data can lead to trouble.

Examples

CONSIDER A TWO-DIMENSIONAL CASE WITH AN

ILL-CONDITIONED INFORMATION MATRIX. GRAPHICALLY

ILLUSTRATE THE DATA DISTRIBUTION AND HOW IT RELATES

TO THE SVD, RESULTING ESTIMATE, etc.

1.5.4 PRINCIPAL COMPONENT REGRESSION

Main Idea

Partition the decomposition of the matrix Rx as

�
v1 � � � vm vm+1 � � � vn

�

2
6666666666666664

�1
. . .

�m

�m+1
. . .

�n

3
7777777777777775

2
6666666666666664

vT1
...

vTm

vTm+1
...

vTn

3
7777777777777775

(1.58)

The main idea is to project the data down to the reduced dimensional space

de�ned by v1; � � � ; vm (which also represents the space for which a large

amount of data are available). This is illustrated graphically as follows:
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xVx
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We can write the projection as

~x �= V T
mx =

2
666664
vT1
...

vTm

3
777775 x (1.59)

~x represents the principal components of x. Note that, in the case that x is

of very high dimension, it is likely that dimf~xg � dimfxg. We can write

the least squares estimator as

ŷ = Y ~XT ( ~X ~XT )�1| {z }
~A

~x

= ~AV T
m| {z }

APCR

x
(1.60)

This is called principal component regression.

Statistical Viewpoint

In a statistical sense, it can be interpreted as accepting bias for reduced

variance. We are a priori setting the correlation between
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vTi x; i = m+ 1; � � � ; n and y to be zero, i.e.,

y = �1 v
T
1 x| {z }
~x1

+ � � �+ �m v
T
mx| {z }
~xm

+0� vTm+1x| {z }
~xm+1

+ � � �+ 0 � vTnx| {z }
~xn

since computing the correlation based on data can introduce substantial

variances which are thought to be much more harmful to estimation than

the bias.

Xv
T

1

Xv
T

n

Xv
T

2

θ1

θ2

θn

Σ y

x1

xn

x2

X

Example

TAKE THE PREVIOUS EXAMPLE, DO THE PRINCIPAL

COMPONENT REGRESSION AND SHOW THE VARIANCE VS. BIAS

TRADE-OFF.

1.5.5 PARTIAL LEAST SQUARES (PLS)

Main Idea

PLS is similar to PCR in that they are both biased regressions or subspace

regression. The di�erence is that, in PLS, the subspace (consisting of m

directions) of the regressor space is chosen to maximize XY TY XT rather

than XXT . In other words, in choosing the m directions, one looks at

- not only how much a certain modes contributes to the X data,

- but also how much it is correlated with the Y data.
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In this sense, it can be thought as a middle ground between the PCR and

the regular least squares.

Procedure

The PLS procedure can be explained as follows:

1. Set i = 1. X1 = X and Y1 = Y .

2. Choose the principal direction vi for XT
i YiY

T
i Xi.

3. vTi Xi = ~Xi

4. Compute the LS prediction of Yi based on ~Xi.

Ŷi = Yi ~X
T
i

1

( ~Xi
~XT
i )

~Xi (1.61)

5. Compute the residuals

Yi+1 = Yi � Ŷi

Xi+1 = Xi � vi~xi
(1.62)

6. If the residual Yi+1 is su�ciently small, stop. If not, set i = i + 1 and

go back to Step 2.

From the above, with m iteration, the m-dimensional regression space is

de�ned. Create a data matrix

~X =

2
666664

~X1

...
~Xm

3
777775
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~X can be expressed as a linear projection of X :

~X = PX (1.63)

where P 2 Rm�n. Then, the PLS predictor can be written as

ŷ = Y ~XT ( ~X ~XT )�1~x

= Y ~XT ( ~X ~XT )�1P| {z }
APLS

x (1.64)

The above is not the most e�cient algorithm from a computational

standpoint. The most widely used is the NIPALS (Nonlinear Iterative

Partial Least Squares) algorithm described in (Geladi and Kowalski,

Analytica Chimica Acta, 1986)

1.5.6 NONLINEAR EXTENSIONS

Regression needs not be con�ned to just linear relationships. More

generally, one can search for a prediction model of the form ŷ = f(x) where

f can be a nonlinear function.
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Finite Dimensional Parameterization

To reduce the problem to a parameter estimation, one de�nes a search set

with a �nite dimensional parameterization for the nonlinear function. The

search set can take on di�erent forms.

� Functional Expansion

ŷ =
nX
i=1

ci�i(x) (1.65)

or

ŷ =
nX
i=1

�i(x; ci) (1.66)

f�i(x); i = 1; � � � ; ng are basis functions (polynomials, sinusoids,

wavelets, Gaussian functions, etc.). The problem is reduced to �nding

ci. The former leads to a linear regression problem while the latter to a

nonlinear problem. The order can be determined on an iterative basis,

that is, by examining the prediction error as more and more terms are

introduced.

� Network Based Approach

For instance, shown below is the so called Arti�cial Neural Network

(ANN) inspired by biological neural systems. The parameters are the

various weights which must be selected on the basis of the available

data. This is referred to as the learning in the ANN parlance. The

usual criterion is again the least squares or its extensions.
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1.5.7 EXTENSIONS TO THE DYNAMIC CASE

Suppose x and y have dynamic correlations:

y(k) = f(x(k); x(k � 1); � � � ; � � �) (1.67)

Di�erent structures can be envisioned:

� Time Series: construct a predictor of form

ŷ(k) = a1ŷ(k � 1) + � � �+ anŷ(k � n)

+b0x(k) + b1x(k � 1) + � � �+ bmx(k � n)

y(k) = ŷ(k) + "(k)

(1.68)

a1; � � � ; an; b0; � � � ; bm can be found to minimize the prediction error

using the available data. Note that, since we don't have data for

ŷ(k � 1); � � � ; ŷ(k � n), and they depend on the choice of the

parameters, this is a nonlinear regression problem. Therefore, it is

pretty much limited to SISO problems.

� State-Space Model: For MIMO systems, use Subspace ID to create

z(k + 1) = Az(k) + "1(k)2
64 x(k)
y(k)

3
75 =

2
64 Cx

Cy

3
75 z(k) + "2(k)

(1.69)

Then, build the Kalman �lter that uses the measurement x to predict

y can be written as

ẑ(k) = Aẑ(k � 1) +K(x(k)� CxAẑ(k � 1))

ŷ(k) = Cyẑ(k)
(1.70)
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