수용성 폴리우레탄 접학제의 제조약 응용

(주) 동성 NSC 박 사 **김 광 수**

Fundamentals of Waterborne Polyurethane Adhesives

DONGSUNG NSC CO., LTD.

Dongsung SC Ltd.

Amenber of the ICI Group

Why Water based Adhesives?

- Nike's VOC elimination program leads the movement from solvent based adhesives to water based adhesives.
- Nike is trying to reduce 90% of VOC emission by 2001.
- All of big shoe buyers are following Nike's environmental friendly policy in their shoe production.

Requirements for the Replacement

- High initial strength
- Possibility of crosslinking
- **■** Easy application
- Safety

Basic Reactions in Polyurethane

Formation of a linear polyurethane

Isocyanate Types and Properties

Types	Properties
- MDI	- Low melt solid
	- Rigid
	 Aromatic UV degrade
	- Low cost
- IPDI	- Low viscosity liquid
	- Semi-rigid
	- Aliphatic UV stable
	- High cost
- TDI	- Health & safety issue
	- Minimal use

Aromatic Isocyanates

Toluene Diisocyanate (TDI)

NCO
$$CH_3$$
+
 CH_3
NCO
 CH_3
NCO
 CH_3
NCO
 CH_3

Diphenylmethane Diisocyanate (MDI)

Aliphatic Isocyanates

Methylene - Bis - 4 - Cyclohexylisocyanate(H₁₂MDI)

$$NCO - S - CH_2 - S - NCO$$

Isophorone Disocyanate (IPDI)

Tetramethylxylene Diisocyanate (TMXDI)

Hexamethylene Disocyanate (HDI)

NCO-(CH₂)₆-NCO

Polyols and Properties

- **■** Types
 - Polyether

- **■** Properties
 - Low viscosity
 - Flexible cure
 - Low cost

- Polyester

- Solid or high viscous liquid
- Rigid cure
- More polar
- Improved adhesion
- Higher cost

Representation of the Ideal Primary Structure of a polyurethane

- = extender amine (low molecular weight)
- (hard) HIHHHH = diisocyanate
- (hard) = urethane group

Interchain Interaction Between the Hard Segments

Domains of interchain interaction (hydrogen bonding) between hard segments

Source: G. Gertel, Polyurethane Hand Book Hanser Publishers, New York (1985) p. 34

Waterborne Polymer

Particle Size Ranges

Water Borne Polyurethanes

- Two Main Classifications
 - Those stabilized with dispersants : not widely used in industries
 - Those ionically stabilized by hydrophilic structures on the polymer

Types of Water Borne Polyurethanes

Type Hydrophilic center

Conventional Emulsifiers

■ Cationic t-amine +alkylating agent

■ Anionic Carboxylic acid +

neutralizing agent

■ Non-ionic Polyethylene oxide chains

PUR dispersion from NCO prepolymer by use of emulsifier

Anionic polyurethanes with carboxylate groups

Anionic polyurethane-polyurea with sulphonate groups

Nonionic, hydrophilic components for the preparation of nonionic PUR dispersion.

Patent Applications in the Area of Waterborne Polyurethane Dispersion

Time Period	No. of Applications	Appileations Per Year
1943 - 1961	30	1.6
1962 - 1966	131	26
1967 - 1971	215	43
1972 - 1976	198	40
1977 - 1981	156	39
1981 - 1985	129	38
1986 - 1991	591	118

Waterborne Urethanes

Advantages

- Fully reacted, isocyanate free
- Film formers with good hardness / toughness
- Low VOC's
- High molecular weight / low viscosity
- Choice of aliphatics or aromatics (to reduce cost)
- Good weathering characteristics
- Functional groups available for crosslinking
- Broad compatibility with other waterborne polymers
- Coatings have good sanding characteristics
- Application by conventional application techniques / equipment

Waterborne Urethanes

Issues

- Unique formulating characteristics
- Cost (as compared to other polymers such as acrylics or polyesters)
- Contains "High Boiling" co-solvents such as N-Methylpyrrolidione

Waterborne Urethanes Current End Uses

■ Coatings

- Floors (Wood, Concrete, Plastics)
- Plastic Parts (Automotives, Business machines)
- Top coats in heavy duty systems
- Flexible substrate (Textiles, Leather, paper, rubber)
- Coil coat primer
- Furniture and sports equipment

Printing Inks

- Screen printing
- PVC gravure inks
- Plastic film

Adhesives

- Industrial laminating
- Structural adhesives
- Sealants

PUR Dispersion by Prepolymer Mixing Process

PU Dispersion by Acetone Process

Hydrophilic monomers in PUR dispersion

Waterborne Urethanes Crosslinking Mechanisms

Temp. Required

Polyfunctional aziridines

ambient

■ Polycarbodiimides

> 180 °F

■ Melamine formaldehyde

> 250 °F

■ Water dispersable polyisocyanate

ambient

- Use of external crosslinking limits shelf life
- Polyfunctinal aziridines not recommended for trade sales or industrial spray applications due to potential toxicity concerns
- Melamines emit formaldehyde during curing cycle