- Ethylene-modified latexes were prepared by the emulsion polymerization using poly(ethylene-co-acrylic acid) (EAA) as a polymeric emulsifier.
- To study the miscibility improvement of ethylene-modified latex film
 - Grafting Analysis
 - DMTA
- To study the barrier properties of ethylene-modified latex film.
 - Water Permeability
 - Chemical Resistance

INTRODUCTION

- Resin-Fortified Emulsion Polymer System
 - System having most of the advantages of both bulk and emulsion polymer system without their disadvantages
 - · Fine particle size emulsions
 - Excellent film property
 - · High gloss property
 - Newtonian-like rheological property (viscosity is shear independent)
 - Excellent mechanical stability and freeze-thaw stability
 - Excellent pigment dispersity and wetting property
 - Low foam production (desirable in roll coating operation)

INTRODUCTION

- ◆ Poly(Ethylene-co-Acrylic Acid) [EAA] Resin
 - Number Average Molecular Weight: 18,800
 - Weight Average Molecular weight: 111,000
 - · Acid Number: 140 mg KOH/gm
 - · Soluble or Dispersible in Water or Alkali
 - · Useful as Emulsifier, Leveling agent, and Film-former
 - Barrier Properties similar to Low-Density Polyethylene (LDPE)
- ◆ Application of EAA Resin
 - Foil Laminations
 - Paper and Paperboard Coatings
 - Medical Packing
 - Binders for Nonwovens

Nanosphere Technology & Process Lab. YONSEI UNIVERSITY

INTRODUCTION

♦ Properties of Ethylene-Modified Latex

Ethylene-modified Latex

Emulsion Polymer

- · High Molecular Weight
- Toughness
- · Mechanical Strength

EAA resin

- · Alkali Dispersibility
- · Crosslinkability
- · Barrier
- · Chemical Resistance

Emulsion Polymerization in the presence of EAA

- In aqueous phase, EAA plays a role in stabilizer.
- The grafting reaction of PS and EAA would be occurred during emulsion Polymerization.

Schematic Representation of Emulsion Polymerization in the Presence of Ethylene-Acrylic Acid Resin.

Nanosphere Technology & Process Lab. YONSEI UNIVERSITY

THEORY

◆ Hildebrand equation

in order to achieve molecular-level mixing of the blend constituents,

◆ Solubility parameter : Hoftyzer and Van Krevelen method (Group contribution)

Table. Physical Parameters of the Pure Constituents of the Blends

	Molar volume(cm ³ mol ⁻¹)	Molar weight (g mol ⁻¹)	Solubility parameter (J ^{1/2} cm ^{-3/2})
polystyrene	98.0	104.1	8.90
polyethylene	33.0	28.1	8.00
poly(acrylic acid)	38.0	72.1	11.92
EAA			8.395

Nanosphere Technology & Process Lab. YONSEI UNIVERSITY

EXPERIMENTAL

Table. Recipe for Emulsion Polymerization using Ethylene-Acrylic Acid Resin as a Polymeric Emulsifier.

Components	Amount (g)	
D.D.I. Water	600	
Ethylene-Acrylic Acid Resin (EAA) Sodium Hydroxide (NaOH) or Triethylamine (TEA) Sodium Chloride (NaCl)	20, 40, 50, 60 variable ¹ variable ²	
Monomer Styrene or Butyl Methacrylate	100	
Initiator Potassium Persulfate	0.5	

¹ NaOH was added in system in order to change the degree of neutralization of EAA.

² NaCl was added in system in order to change the ionic strength.

Surface Tension & Pyrene UV Absorbance

- Pyrene absorbance and surface tension of ASR solution as a function of ASR concentration. (wt% based on EAA solution)
- The EAA molecules in aqueous phase seem to form aggregates at low concentration before they starts to transfer to air-water interface.

Figure. UV absorbance of pyrene at 360nm and surface tension of EAA solution as a function of EAA concentration(wt% based on EAA solution.

Nanosphere Technology & Process Lab. YONSEI UNIVERSITY

RESULTS & DISCUSSION

◆ EAA Aggregates Size

- Effect of % neutralization of EAA
- actual charge density of EAA
- size of aggregate
- •Effect of excess neutralization agent
- increasing actual charge density of EAA.
- → induce the effect of screening of electrostatic repulsions between charges of along the EAA chain.
- % degree of neutralization of EAA: OH/COOH
- Size measured by light scattering.

Figure. Aggregate sizes of EAA with different degree of neutralization of EAA.

♦ Latex Particle Size with Concentration of EAA

- As the concentration of EAA as a polymeric emulsifier increases, particle size is smaller and size distribution becomes narrow.
- Polydispersity is affected by :
- water solubility of monomer
- concentration of EAA as a polymeric emulsifier.

Figure. Particle size and size distribution of ethylene -modified polystyrene with different EAA concentration at 140% degree of neutralization of EAA.

Nanosphere Technology & Process Lab. YONSEI UNIVERSITY

RESULTS & DISCUSSION

Polydispersity Index with Degree of Neutralization of EAA

Figure. Particle distribution index of ethylene -modified polystyrene with different degree of neutralization of EAA.

- As the degree of neutralization of EAA increases, the particle size is smaller and size distribution becomes narrow.
- Effect of excess neutralization agent
- induce the effect of screening of repulsions between charges of along the EAA chain.
- play a similar role of electrolyte.
- % degree of neutralization of EAA
 : OH/COOH

♦ Kinetic Study

- Effect of EAA concentration of the rate of emulsion polymerization of styrene.
- The increase of EAA concentration increases the number of aggregates providing polymerization loci and thus the rate of emulsion polymerization increases.
- The result is similar to to conventional surfactant system

Figure. Conversion of monomer versus reaction time in emulsion polymerization of styrene with different concentration of EAA (wt% based on monomer).

Nanosphere Technology & Process Lab. YONSEI UNIVERSITY

RESULTS & DISCUSSION

Grafting Analysis

Table. Characteristics of grafted EAA in ethylene-modified PS latex

	Grafting efficiency (%)
PS	20.2 % a
EAA	60.1 % ^b

- $^{\rm a}$ (Weight of total PS weight of toluene-soluble PS) \times 100 / (weight of total PS).
- Weight of total EAA weight of alkali-soluble EAA) x 100 / (weight of total EAA).

- Hinder desorption of the EAA from the latex
- → improve the latexes' stability
- Prevent the migration and accumulation of EAA molecules
- Act as compatibilizers for the main polymer components.

RESULTS & DISCUSSION

Dynamic Mechanical Thermal Analysis Result

The inhomogeneity between PS and EAA renders the product turbid

Figure. Dynamic mechanical properties of simple blending film of PS latex and 60wt% EAA based on PS as a function of temperature: storage modulus (E'), damping curves (tan δ).

Nanosphere Technology & Process Lab. YONSEI UNIVERSITY

RESULTS & DISCUSSION

Dynamic Mechanical Thermal Analysis Result

Figure. Dynamic mechanical properties of ethylene modified latex films with different EAA concentration as a function of temperature.

◆ Effect of EAA Concentration on Permeability

Figure. Permeability of ethylene-modified PBMA latex film with different EAA concentration.

Table. Permeability of PBMA Films and Pure EAA Film.

	·	
	Permeability ^a (g mm/m² day)	
PBMA film	8.1267	
EMPB-E20 film	4.2276	
EMPB-E40 film	3.9046	
EMPB-E60 film	3.5568	
EAA film	0.2275	

- a measured at 20°C and 90% RH.
- ^b % based on monomer.
- * All sample drying at 40°C.

Nanosphere Technology & Process Lab. YONSEI UNIVERSITY

RESULTS & DISCUSSION

Chemical Resistance

Figure. Weight loss of ethylene-modified PS and the simple blends of PS/EAA as a function of EAA concentration after their immersion to methyl ethyl ketone for 5 hours.

The chemical resistance of ethylene-modified PS films is about 20 times higher than that of simple blends.

Table. Percentage Weight Losses of Ethylene-Modified Latex Films and the Simple Blending Films of PS and EAA after Their Immersion to Methyl Ethyl Ketone for 5 Hours

	Weight Loss %		Weight Loss %
EMPS-E60	1.72	SBPS-E60	41.0%
EMPS-E40	2.26	SBPS-E40	46.8%
EMPS-E20	6.61	SBPS-E20	55.8%

- EAA in aqueous solution played role in polymeric surfactants.
- Misicibility between PS and EAA has been improved without any compatibilizer during ethylene-modified emulsion polymerization.
- The water barrier property of ethylene-modified latex film was improved with increasing the EAA concentration.
- The Chemical Resistance of ethylene-modified latex film was dramatically better than that of the simple blends.

