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Theory 
In the phase behavior of binary polymer solutions, a upper critical solution temperature (UCST), a lower critical solution temperature (LCST), both of them, hour-glass shaped and closed miscibility loop phase behavior are encountered. Such phase behavior may be due to highly oriented interactions such as hydrogen bonding. The purpose of this study is to describe a closed miscibility loop and both UCST and LCST phase behavior of liquid-liquid equilibria for binary polymer solutions. To take into account highly oriented interactions (or specific interactions), we employed a secondary lattice concept as a perturbation term and the temperature dependence contribution in the energy parameter contributed by the oriented interactions.

The energy of mixing related to the number of nearest-neighbor pairs is give by 
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, related to the total number of contacts of component i ( zqiNi ), is the total number of 1-2 pairwise contacts and 

 is the interchange energy

To correlate energy of mixing data from Monte-Carlo simulation is given by
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The Helmholtz energy of mixing (

) is obtained by integrating the Gibbs-Helmholtz equation using the Guggenheim's athermal entropy of mixing as a boundary condition:

              


A simple lattice model expression for predicting liquid-liquid equilibria is given by   
      



 EMBED Equation.2  
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A dimensionless temperature is defined by 

, where T is an absolute temperature and k is a Boltzmann's constant. 

, 

, and 

 are the number of segments per molecule, volume fraction, and surface fraction of component i, respectively.

Specific interaction term is given by

          


where 

 is the Helmholtz energy of mixing for the secondary lattice for i-j segment-segment pair and 

 is the number of i-j pairs. 

 (

) is the reduced energy parameter contributed by the oriented interactions and 

 is the surface fraction permitting oriented interactions. To take into account the temperature dependence of the energy parameter by the oriented interactions, 

 is redefined by






where 

 is the energy parameter independent of temperature by oriented interactions and α is constant.

Conclusion
[image: image1.wmf]Fig.1. The coexistence curve for PEG 
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Open circles are experimental data (Bae 

et. al.

32

, 1991) and the solid line is 

calculated by eq.(24) and eq.(25).      
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We proposed a simplified and improved expression for the Helmholtz energy of mixing for monomer/r-mer mixture that employs a secondary lattice concept to take into account the specific interaction contribution. In our proposed model, we introduced new parameter 

, the specific interaction energy parameter independent of temperature. We have shown several phase diagrams of some binary polymer solutions comparing calculated coexistence curves with experimental results. Our new model describes and predicts remarkably well a closed miscibility loop and both UCST and LCST phase behaviors of polymer solutions.
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