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Introduction

1. Salt-induced precipitation has been successfully applied for separating process proteins in downstream processing. For efficient design of a protein separation process, good understanding of the phase behavior of proteins in aqueous electrolyte solutions is helpful. In our previous work1, we proposed an equation of state for single protein system based on Chiew's model for homopolymers to take into account the pre-aggregation effect for protein particles. As pre-aggregated single proteins have similar structures to that of polymers, the chain-connectivity for homopolymers was employed to represent pre-aggregation behaviors in protein systems. In binary protein systems, however, the pre-aggregation is expected to occur between different protein particles as well as the single ones. Therefore, simple chain-connectivity that can be used for homopolymers cannot be adapted in mixtures composed of different proteins. Song et al.2 and Hino et al.3 recently proposed a perturbed hard-sphere-chain (PHSC) equation of state for copolymer mixtures based on a modified form of Chiew's equation of state for athermal mixtures of heteronuclear hard-sphere chains. On the assumption that the pre-aggregated protein mixture has structural similarity to copolymers, the PHSC equation of state developed for copolymer mixtures is considered to be applied to describe the pre-aggregation behaviors in protein mixtures.
In this study, we propose a molecular thermodynamic model for the binary protein systems to explain the effect of pre-aggregations occurring between unlike protein particles, which is based on the PHSC equation of state for copolymer mixtures. 
In the absence of pre-aggregation, we investigate the effect of size disparities and salt concentrations on the osmotic pressure. The influence of protein pre-aggregation for different types of proteins is also discussed.

Model Development

Equation of State

In perturbation theory, an assembly of hard spheres is used as the reference system, while the remaining interactions are treated as perturbations;
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where 
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 is the density of protein molecules, and 
[image: image3.wmf]P

 is the pressure.
Binary Protein System 

Fluid Phase

The equation of state for fluid mixtures is written as
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We assume that the structure of the pre-aggregated binary protein particles is the same as that of the folded random copolymer mixture consisting of two types of segments A and B (see Fig. 1). In a binary protein system, segments A and B, respectively, represent protein-A and protein-B, and the chain length dependent parameter is dealt with degree of pre-aggregation. In this work, we present the pre-aggregated proteins as the type of 
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 are fractions of the protein-A in the 1-component and 2-component, respectively, 
[image: image8.wmf]1

w

 and 
[image: image9.wmf]2

w

 are the degree of pre-aggregation in each component. 
The reference equation for the copolymer mixtures is given 
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where m is the number of components and 
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 is the mole fraction of component 
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. The number of effective hard spheres per molecule of component 
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 is designated by 
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w

. Subscripts 
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 and 
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 denote the kth and lth pre-aggregated molecules, respectively, of each component. In a binary protein system, eqation (3) is redifined as follow :
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where 
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 EMBED Equation.3  


=A,B) is the number of protein molecule 
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 in component i per pre-aggregated protein particle : 
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where 
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 is the combined-effective hard sphere diameter
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2. where 
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In protein mixtures, the packing fraction 
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 is defined
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For one-component systems and equal-segment-size mixtures, 
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=
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, and equation (3) reduces to the Carnahan-Starling equation for hard spheres4.

The perturbation term is
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where 
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where 
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x

 is the mole fraction of the component 
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 and 
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U

 is the total interaction energy for i-j pair (i,j=1,2). 
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where
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Solid Phase

For the solid phase, the reference equation of state and Helmholtz energy are given by5: 
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Here, parameter 
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 is the ratio of smaller to larger hard-sphere diameters. In this work, 
[image: image65.wmf]BB

AA

d

d

³

 is used so that 
[image: image66.wmf]AA

BB

d

/

d

=

a

 and the function 
[image: image67.wmf])

(

f

a

 is determined approximately to fit the computer-generated fluid-solid coexistence curves for binary hard-sphere mixtures in the range 0.85
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The perturbation of the solid phase is the same as that of the fluid phase, but the energy is represented by the difference of the number density.

The total equations, therefore, are
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The Helmholtz energy and chemical potential of the solid phase are also derived from the thermodynamic relationship.

For aqueous solutions containing two kinds of proteins, the equilibrium condition is
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where subscripts "1" and "2" represent species of proteins.
Result and Conclusion

We propose a molecular thermodynamic model for the binary protein systems to explain the effect of pre-aggregations occurring between unlike protein particles, which is based on the PHSC equation of state for copolymer mixtures. 
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difference between fluid and solid phases at a given composition of the fluid phases decreases with increasing the value of the disparity in protein size and the salt concentration. The equilibrium osmotic pressure is increased as the degree of pre-aggregation increases. The type of pre-aggregation considerably affects the phase behaviors of binary protein system.
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FIGURE 4 Theoretical phase diagrams for aqueous protein mixtures : Csalt=3.0M, H/kT=8.9, (/kT=0.2nm, (=0.3nm, (r=0.08nm, ds=0.694nm, d11=3.5nm, d22=3.4nm, X=0.9, Y=0.1





FIGURE 3 Theoretical phase diagrams for aqueous protein mixtures : Csalt=3.0M, H/kT=8.9, (/kT=0.2nm, (=0.3nm, (r=0.08nm, ds=0.694nm, d11=3.5nm, d22=3.4nm, (1=1.05, (2=1.05 








FIGURE 2 Theoretical phase diagrams for aqueous protein mixtures with different size d22 : H/kT=8.9, (r=0.08nm, (/kT=0.2, (=0.3nm, ds=0.694nm, Csalt=3M





FIGURE 1 Theoretical phase diagrams for aqueous protein mixtures with different Csalt : H/kT=8.9, (r=0.08nm, (/kT=0.2nm, (=0.3nm, ds=0.694nm, d11=3.5nm, d22=3.4nm
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