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Introduction

The scheduling of batch chemical processes has received significant attention from both the academic and industrial communities. Numerous scheduling methodologies have been developed, most of which have focused on the construction of schedules based on time-invariant deterministic data on processing time and other batch characteristics, e.g., yields, parameters for processing time vs. yield curve, etc. When variability in batch data is encountered during execution of a schedule, the information is typically used in a reactive mode to reschedule the plant, to avoid infeasibilities or sub-optimalities in resource allocation induced by the actual batch conditions (Kanakamedala et al., 1994; Bassett et al., 1997). However, these 'reactive scheduling' methodologies seldom seek to model correlation in processing data and use them to anticipate future variations in scheduling parameters in revising the schedule.  This is in contrast to control, where stochastic models containing space/time correlation information is used with an optimal estimation technique (e.g., Kalman filtering) for optimal prediction and predictive control.

In this study, a new scheduling framework, which we name -"proactive scheduling"- to distinguish it from 'reactive scheduling'-, is developed to handle correlated forms of uncertainty in a dynamic manufacturing environment. Frequently in chemical processes, variations in prior process units propagates to later processing requirements; for example, variability in feed moisture content may affect reaction yields and times at one stage and hence the amount of product to be recovered at a later stage. Since it is possible to observe the process time and yield as well as other relevant measured processing variables at a prior processing stage, this information can be used to update the expected value of the scheduling relevant parameters at a later stage, before the entire schedule is executed. This gives the decision maker extra leverage to change the schedule proactively in anticipation of this updated value. This correlation information can be represented, in its simplest form, by the covariance of processing conditions or parameters. The main idea of proactive scheduling is then to use observations made at the current time to obtain conditional expectations of future processing parameters. A deterministic scheduling problem is solved repeatedly to revise the schedule as the parameters are continually updated by a Kalman filter based on the information coming from actual execution of the schedule. Historical operation data can be used to estimate the covariance of key parameters. Parameters with a high degree of uncertainty can be updated effectively using this scheme, giving the proactive scheduling a boost in performance over the purely reactive scheduling which would continue to use the average values for parameters. The proactive scheduling approach has been tested on a general multi-purpose batch chemical scheduling problem. 
Motivating Example

The short-term scheduling problem of batch plant has an objective to determine the optimal production plan for satisfying the production demands for different products at due date. The problem of short-term scheduling of batch plants considered in this paper can be defined as follows. The plant has a structure of multiple stages with equipment in parallel. Fig. 1 illustrates the case of a plant for general multi-stage manufacturing process. The motivating process consists of 3 stages and 6 machines. The objective of the problem is to determine a production scheme for the minimization of makespan.
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Fig. 1. Multistage plant with batch operation equipment in parallel.


The main assumptions of the motivating process are as follows: batch sizes are fixed parameters. Each product is to be processed only once by exactly one unit of every stage it must go through. No resource constraint except equipment is considered. There is no intermediate storage between stages 2 and 3.

The target process is similar to a sequential multipurpose batch process. Therefore, the continuous time representation described in Moon and Hrymak (1999) is adopted here. In their model, time slots are used to assign products and its production paths simultaneously.
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subject to:

	A. Assignment Constraints
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B. Duration Constraints
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	C. Demand Constraints
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D. Sequence Constraints
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State Estimation

The proposed scheduling method solves a deterministic scheduling problem repeatedly with the parameters updated by a state estimation technique as illustrated in Fig. 2. The proposed method uses the Kalman filter, which is a statistically optimal estimator. Let us bring in the standard state-space system description. The state vector is used as the parameters of a scheduling system.
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The Kalman Filter gain matrix can be chosen to minimize the variance of the estimation error, which has by far been the most popular state estimation technique (Morari et al, 2001).
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Fig. 2. Proactive scheduling procedure using state estimation.


Using eqns (3), (4) and (5) recursively, state vector x along with time horizon k can be estimated. The major parameter of the motivating process is processing time of process units.

The processing time is changeable parameter by uncertainty causes in the manufacturing environment. And the parameters are strongly or weakly related each other according to process units. There are lots of causes such as feed material change, feed temperature change, reaction conversion change and etc. Therefore, the covariance of the parameters can be defined as the summation of the causes that make some disturbances as eqn. (8). 
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In this example, 8 causes are considered. The realized processing time of table 1 is a data set selected out of the 1000 realized samples. Fig. 3 shows simulation results of scheduling by general deterministic, reactive and proactive scheduling method under the processing condition in table 1.
	Table 1. Processing Data of Motivating Example

	
	Prod.
	Equipment

	
	
	Stage 1
	Stage 2
	Stage 3

	
	
	Unit 1
	Unit 2
	Unit 3
	Unit 4
	Unit 5
	Unit 6

	Mean Processing Time

(hour)
	1
	6.00
	7.00
	12.00
	10.00
	8.00
	7.00

	
	2
	10.00
	8.00
	15.00
	17.00
	10.00
	12.00

	
	3
	12.00
	14.00
	14.00
	15.00
	12.00
	13.00

	Realized Processing Time

(hour)
	1
	7.49
	8.54
	17.10
	22.82
	9.96
	10.35

	
	2
	13.15
	9.84
	17.57
	22.13
	12.02
	17.24

	
	3
	14.25
	16.48
	21.20
	26.08
	20.30
	18.80

	Demand
	Prod 1: 4 batches,  Prod 2: 4 batches,  Prod 3: 2 batches


Each Gantt chart suggests different operation guide with different makespan. Deterministic solution is the scheduling sequence obtained using initial mean value processing time. The deviation between initial and real processing time makes inefficient scheduling result. The general reactive method revises the schedule for unexpected variations. But it doesn’t predict and update the processing time. On the other hand, the proposed method can revise the schedule efficiently using estimated parameters, resulting in the reduction of makespan compared with reactive method. 
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Fig. 3. Gantt chart of the solutions for the motivating example.


The scheduling results are summarized in Table 2. (Ideal case means the sequence solution obtained with real processing time.) In the case of real chemical processes that have lots of products and units, the proposed method can guarantee better efficiency.

	Table 2. Scheduling Results of Motivating Example

	
	MS.
	Deviation

	Ideal
	120.87
	

	Determ
	161.28
	33%

	Reactive
	149.29
	24%

	Proactive
	129.49
	7%


Conclusions

 A proactive scheduling methodology has been presented in this paper to address the problem of effective rescheduling in a general multi-stage multi-purpose manufacturing process. The proposed method shows better performance compared to a general reactive scheduling method. The proposed method can also be used for developing a manufacturing strategy with estimated down stream information. Furthermore, the key idea of the proposed method is applicable to any stage-wise optimization problem under uncertainty where the observations of the current and previous stages can be used in a predictive fashion to reduce the uncertainty in the future stages.
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