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1. Introduction
Suspensions of sub-micron sized charged particles in liquid electrolytes are frequently encountered in industrial and biological processes. It is desirable therefore to determine their electrokinetic properties, such as the electrophoretic mobility and the conductivity. In recent years, numerical techniques have been developed to determine the hydrodynamic and electric interactions between particles in concentrated suspensions so that it is now possible to evaluate the number of transport properties of suspensions. The primary aim of the present study is to use one of these methods to determine the electrokinetic properties for random as well as ordered suspensions and to report them in a tabular form suitable for easy reference. One obvious problem in undertaking such a task is a large number of variables for which the computations have to be carried out. The problem is particularly severe in the present case since the suspensions of charged particles typically require a large number of variables for their characterization, e.g. the surface charge or the ( potential of the particles, the mobility, valency and concentration of ions, concentration of adsorbed polymer molecules, and the size, shape and spatial distribution of particles. 

We shall assume, as in most other studies on the subject, that the electrokinetic variables, i.e. ion densities, electric potential, and velocity, may be treated as small perturbation quantities from the state of rest in which the particles are in equilibrium with the surrounding electrolyte with the electric potential satisfying the well known Poisson-Boltzmann equation.

Furthermore, we shall restrict the analysis to the case of particles with thin double layers, i.e. to (a>>1, (-1 and a being respectively the double layer thickness and the radius of particles. As we shall presently see, the number of parameters for which the computations have to be carried out becomes manageable when these assumptions are justified.

2. Governing equations and the method of solution 

Governing equations for electrokinetic phenomena in suspensions of charged particles whose double layer thickness is small compared to the radius a have been derived by O'Brien [1] who extended an earlier work by Dukhin and Derjaguin [2]. The applied electric field is assumed to make a small perturbation to the electric potential generated by the charged surfaces. Outside the thin double layers of each particle, the fluid motion satisfies the well-known Stokes equations
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where p is the pressure, ( the viscosity, and u the velocity. The perturbation electric as well as ionic potentials satisfy the Laplace equation. As mentioned in the Introduction, we select a model problem whose solution will allow us to calculate the electrokinetic properties of the colloids. In this model problem we require that the normal velocity of the fluid at the surface be the same as that of the particle while the tangential velocity suffer a jump given by
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where the subscript s stands for the component along the surface (D(+ of the particle ( just outside the double layer, v(=U( +((((x-x() the velocity of the particle, U( and (( the translational and rotational velocities, and ( a potential satisfying
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with a boundary condition
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Here, Ks is the surface conductivity and
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is the surface Laplacian. Finally, to complete the problem statement for ( we require that
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where V is a suitably chosen large volume element consisting of many particles.

We should note that ( defined here is not the actual electric potential in the suspension. However, one can construct expressions for various ionic or electrical potentials by superimposing the solution of (1)-(4) with different values of Ks.

To complete the statement of the model problem for u, we also need to specify either the force and torque or the translational and rotational velocities of each particle. Our goal will be to calculate three quantities as functions of Ks and c, the volume fraction of particles.

The first is the average dipole strength defined via
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where we have assumed that the suspension is isotropic on the macroscale so that the mean dipole is aligned along the mean potential gradient. Here,
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is the unit outward normal vector on the surface of particle (.

The second is the average mobility defined via
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the force and torque on each particle being zero.

The third is the average resistivity defined via
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the translational and rotational velocities of the particles and the average velocity of the fluid being zero. The resistivity calculations are important in estimating the electro-osmotic flow through a fixed bed of particles. Here, 6(a(Kun is the average force on a particle in a fixed bed of uncharged particles having the same spatial configuration as that of the charged particles when a fluid with unit mean velocity is pumped through the bed. Thus, Kun is related to the Darcy permeability k of the fixed bed by  
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It may be noted that R and M defined here are not inversely related to each other even as c( 0, and thus these quantities should not be confused with the resistivity and mobility for ordinary suspensions where they are inversely related at small c. 

The method for solving the above problems consists of two steps. The first is to write suitable expressions for the velocity and potential near the surface of each particle and to apply the boundary conditions at the surface of the particles to determine the relations among various coefficients that appear in the expressions for the velocity and potential. The second step is to write expressions for u and ( that are valid outside all the particles, and to relate them to the local expansions around each particle. Thus, for spherical particles, we use the Lamb's general solution for the velocity near the particle (,
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and 
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are spherical harmonics of degree n centered at x(. The expressions for 
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are similar to (9) and (10) with Pnm replaced by Tnm, (nm, and Snm, respectively.

Now applying the boundary conditions for u and ( [cf. (2) and (4)] we obtain the following relations among various coefficients:
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where
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are related to the translational and rotational velocity components. Similarly, the force and torque exerted by the fluid on particle ( and its double layer are related to
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The above relations do not form a complete set of equations to determine all the coefficients used in the expression for u and (. The additional relations are obtained by first writing general expressions for u and ( valid outside all the particles and relating them to the local expansion given by (10). Such expressions for the solution of the Stokes and Laplace equations are given in Mo and Sangani [3] and Sangani and Yao [4].

3. Results

We shall present results for random as well as ordered arrays in this section. The hard-sphere random suspensions were obtained from a molecular dynamics code. Results for D, M, and R were obtained by averaging over 30 configurations for each volume fraction c of particles. 

Tables 1-2 give the complete set of results for all the three electrokinetic properties as a function of c and Ks for the simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), and random arrays with N=16 and N=32. The most important conclusion from these tables seems to be the rather insensitive dependence of all the three electrokinetic properties on the spatial arrangement of the particles except at very high c. The reason for this insignificant dependence can be understood in terms of screening mechanisms and lubrication effects. More specifically, it is found from the experience with similar calculations for uncharged particles that the effects of spatial arrangement and finite N are generally important when (i) the behavior of the averaged property at small c for periodic and random arrays is different, (ii) the lubrication forces affect significantly the behavior at large c, and (iii) the hydrodynamic screening is absent. The force on a fixed particle, charged or uncharged, does behave differently for the random and periodic arrays in the low c limit. At higher c, the lack of significant lubrication forces and the presence of Brinkman screening in the fixed beds contribute to the insensitivity to N. The case of mobility calculations is slightly different. For uncharged particles, the dependence on N is very substantial as can be seen from Ladd's calculations [5]. The absence of screening mechanism in random sedimenting suspensions together with very different estimates for dilute random and periodic arrays cause the sedimentation velocity to depend strongly on N in the case of uncharged particles. For charged particles, however, the force on each particle is identically zero, making thereby the interactions among particles weak. This together with the weak lubrication effects seem to be the main factors contributing to the weak dependence of M on N.
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Table 1. The average dipole strength, D, for various arrays. RA(16)=random array with N=16.

	c
	Ks
	SC
	BCC
	FCC
	RA(16)

	0.01
	0.0

2.0
	-0.498

0.503
	-0.498

0.503
	-0.498

0.503
	-0.497

0.503

	0.3
	0.0

2.0
	-0.435

0.589
	-0.435

0.589
	-0.446

0.605
	-0.446

0.605

	0.61
	0.0

2.0
	
	0.298

0.747
	0.297

0.738
	0.301

0.744


Table 2. Results for M and R
	
	M & R
	R
	M

	c
	Ks
	SC
	BCC
	FCC
	RA(16)
	RA(32)
	RA(16)
	RA(32)

	0.01
	0.0

2.0
	0.982

0.331
	0.933

0.279
	0.987

0.333
	0.995

0.333
	
	0.985

0.332
	

	0.3
	0.0

2.0
	0.605

0.253
	0.608

0.271
	0.607

0.270
	0.622

0.247
	0.601

0.245
	0.601

0.253
	0.603

0.273

	0.61
	0.0

2.0
	
	0.287

0.105
	0.289

0.088
	0.263

0.134
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