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1. INTRODUCTION
[1] summarized well the nonlinear dynamic models composed of nonlinear static functions and linear dynamic subsystems and surveyed the model structure selection methods. The types of the nonlinear models can describe well various chemical processes since the nonlinearity of the steady-state gain is usually more significant than the nonlinearity of the time constants. In this research, I will consider a Hammerstein model of Figure 1 among such nonlinear models, where the nonlinear static function precedes the linear dynamic subsystem. [2] recommended the Narendra-Gallman algorithm to model simulated distillation columns and an experimental heat exchanger process. They demonstrated successfully the usefulness of the Hammerstein model for nonlinear chemical processes. But, the algorithm needs an iterative procedure since it cannot remove completely the interaction between the two identification problems of the linear subsystem and the nonlinear function. [3] used two autotune tests with both different relay heights and different dynamic elements inserted in the control loop to determine nonlinear process models. The autotune approaches can identify the nonlinear model efficiently with simple relay feedback tests. But, only several points of the nonlinear function can be estimated. In this research, I propose a simple system identification method for Hammerstein-type nonlinear dynamic processes. By separating completely the two identification problems of the nonlinear function and the linear dynamic subsystem, we can directly use existing well-established linear system identification methods to identify the linear subsystem and a simple non-iterative optimal identification method to identify the nonlinear function.
2. PROPOSED IDENTIFICATION METHOD

2.1 Hammerstein Model

In this paper, the following Hammerstein model is considered.
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where 
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. For more information on the linear stochastic model, refer to [4]. Here, (1) is the nonlinear function and the system of (2) and (3) is the linear dynamic subsystem of the Hamerstein model. The problem in this research is to estimate the system matrices 
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 from the discrete-sampled-output data and the given process input. 
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2.2 Process Activation

To activate the process, we use a special test signal composed of a two-step (binary) signal and a multi-step signal as shown in Figure 2b. The two-step signal from 0 to 20 is mainly to activate the linear subsystem and the other multi-step signal from 20 to 50 is designed to activate the nonlinear function.

2.3 Identification of the Linear Dynamic Subsystem

The core idea for the complete separation of the two identification problems of the linear subsystem and the nonlinear function is that we can avoid the nonlinearity with using a two-step signal whose one step value is zero and the other step value is any nonzero. Note that we can multiply any value to the nonlinear function without loss of generality since we have freedom to change the static gain of the linear subsystem. Let’s multiply a value to make the input and output of the nonlinear function same for the two-step signal. Then, we can identify directly the linear dynamic subsystem from the process input of the two-step signal and the corresponding process output using any existing system identification methods for linear models. This allows us to enjoy elegant and powerful tools for the linear system identification. 

2.4 Identification of the Nonlinear Function

We identify the nonlinear function by solving the following objective function from the whole input-output data sets of Figure 2. Here, assume that we estimated the parameters (
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subject to
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where, 
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 denote the process output and the model output, respectively. (10) and (11) are the optimal one-step ahead predictor for the linear deterministic-stochastic process of (2) and (3). The derivatives of the objective function with respect to the adjustable parameters can be calculated as follows: From (8), (12)-(16) are derived.
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From (11) and (10), (14)-(16) are obtained.
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The initial value of 
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 is zero because the parameters cannot change the initial values of the state vector. So, we can calculate the first derivative from (12)-(16) with solving the differential equation of (15).

The second derivative of (8) is



[image: image31.wmf]å

å

=

=

ú

û

ù

ê

ë

é

¶

¶

ú

û

ù

ê

ë

é

¶

¶

+

¶

¶

-

-

=

¶

¶

N

i

T

i

i

N

i

i

i

i

P

t

y

P

t

y

N

P

t

y

t

y

t

y

N

P

P

V

1

1

2

2

2

ˆ

)

(

ˆ

ˆ

)

(

ˆ

1

ˆ

)

(

ˆ

))

(

ˆ

)

(

(

1

ˆ

)

ˆ

(





(17)

Here, we realize from (16) that 
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 are zero since the process input is independent of the adjustable parameters. Then, we reach a very important conclusion that 
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 is also zero. So, we can derive the following equations from (17).
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Then, we reach the following exact equation. Note this is not an approximated Talyor series expansion.
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The following optimal solution can be derived from (20) by setting 
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In summary, we can calculate the first and the second derivative in (21) from (12)-(16) and (18) easily with solving the differential equation of (15). Then we obtain the optimal solution of (21). Remark that we obtain the analytic solution of (21) of the nonlinear function without any iterative procedure differently from previous approaches.

3. SIMULATION STUDY

We simulated the following Hammerstein-type nonlinear process that has a third order plus time delay as the linear subsystem and an exponential function as the nonlinear function:
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Figure 2 shows the activated process output by the RBS signal followed by the uniformly distributed random noise. First, we estimated the following third order plus time delay model from the RBS input signal and the corresponding output using the existing prediction error identification method [4] that guarantees optimal parameters minimizing the prediction error.
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Second, we identified the polynomial nonlinear function using the proposed non-iterative least squares method as follows:
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Note the actual process of (22) and (23) can be equivalently rewritten as follows:
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From the comparison of (24) and (26), we can see the estimated linear subsystem is almost exact since the RBS signal does not activate the nonlinear characteristic of the nonlinear function. And we confirmed the identification result for the nonlinear function is also excellent.

4. CONCLUSIONS

A new system identification method for Hammerstein-type nonlinear processes has been proposed. It separates completely the two identification problems of the linear subsystem and the nonlinear function by using a special test signal. The proposed method has advantages over previous approaches that we can use any existing well-established linear system identification methods for the linear subsystem identification and a non-iterative optimal identification method for the nonlinear function identification. 
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Figure 1 Simple Hammerstein-type nonlinear process
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Figure 2. Process activation using the proposed test signal
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