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1. INTRODUCTION
[1] has discussed about various nonlinear process models and summarized model structure selection methods. Among these various-type nonlinear models, we consider the simple Wiener-type nonlinear model in this research. The model consists of a linear dynamic subsystem and a nonlinear static function as shown in Figure 1a. [2] used two autotune tests with both different relay heights and different dynamic elements inserted in the control loop to determine nonlinear process models. [3] also suggested the use of relays to estimate the Wiener model that lets the output of the linear subsystem symmetric. Their methods can identify the nonlinear model efficiently with simple relay feedback tests. But, only several points of the nonlinear function can be estimated. [4] identified a Wiener model whose nonlinearity is expressed as a power series and applied it to model the pH process. They reduced the number of adjustable parameters by choosing a sinusoidal signal. But, these two strategies still use many adjustable parameters due to the simultaneous identification of the linear subsystem and the nonlinear function. In this research, we propose a simple relay feedback identification method for Wiener-type nonlinear processes. We separate the identification of the nonlinear function from that of the linear subsystem by using a relay feedback method. From only one relay feedback test, it can estimate the whole range of the nonlinear function corresponding to the range of the activated process output as well as the ultimate information of the linear subsystem. If we do additional tests we can estimate more complicated models for the linear subsystem with the inverse of the estimated nonlinear function.

2. PROPOSED IDENTIFICATION METHOD

In this research, we use the modified relay proposed by [5] to activate the nonlinear process (the reason will be discussed later). The relay feedback signal has three steps in the half-period as shown in Figure 1b. Here, note that 
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 of the linear subsystem output can be exactly described by the following Fourier series expansion (For details, refer to [5]).
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Where 
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 represent the magnitude of the relay, the relay frequency and the frequency response of the linear subsystem. Note that the ratios of the third and fifth harmonic terms to the fundamental term of (1) are 0.05719 and 0.03431, respectively. So, the higher harmonic terms than the fundamental term are almost negligible. Also, 
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. Therefore, the output of the linear subsystem can be approximated with good accuracy by the following fundamental sine signal.
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In the above sinusoidal signal, the oscillation period is known while amplitude is unknown in advance. However, the unknown amplitude can be merged to the nonlinear function. That is, we can assume, without loss of generality, that 
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Now, we can obtain all points of the nonlinear function for every sample from 
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 of (4) and the measured process output. This table itself can be used for the nonlinear function. Or it can be fitted to obtain a given parametric nonlinear function. Moreover, we can derive the following ultimate information from the fact that the output of 
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(5), 
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Where 
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 and 
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 denote the ultimate gain of the linear subsystem and the ultimate period (relay period), respectively. So, from only one relay feedback test, we can obtain the ultimate information of the linear subsystem using (5) and (6) as well as the nonlinear function of the Wiener-type model. Let us exemplify a simple but efficient control structure of Figure 2a using the inverse nonlinear function. It is equivalent to control the linear subsystem of Figure 2b using a linear PID controller if the estimated nonlinear function is exact. Where 
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 are the set point of the process output and the linear subsystem output, respectively and 
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 is the estimated nonlinear function. We can tune the PID controller using the ZN tuning method [6] or the margin specification tuning method [7]. Note we can design the nonlinear controller of Figure 2a from only one relay feedback test, which corresponds to the PID autotuning for Wiener processes. If we want to identify a more complex parametric model for the linear subsystem we should do additional tests such as additional relay tests or PRBS tests to activate persistently the process. We can reconstruct the output of the linear subsystem using the inverse of the nonlinear function identified already by the previous relay test. Then, we can identify the parametric model from the reconstructed output and the given process input using usual linear system identification methods. 

3. SIMULATION STUDY

We simulated the following Wiener-type process that has a third order plus time delay as the linear subsystem followed by an exponential nonlinear function.
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Where 
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 denote the process input, the output of the linear subsystem and the process output, respectively. Figure 1b shows the activated process output by the modified relay. We can recognize that the process output is severely asymmetric due to strong nonlinearity of the process. Figure 3a shows the estimated nonlinear function by matching the measured process output 
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 is the angular frequency of the relay oscillation. Note that 
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 of one period has two same values. So, we obtain two lines from the data sets of one period as shown in Figure 3a. The modified relay gives almost same two lines because the high order harmonic terms are negligible. We can use either line to interpolate 
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 from the process output. But, In this research, we use both lines for the interpolation by averaging two interpolated points of 
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 for a given process output like in Figure 3b (dotted line). We do another test using RBS signal of which minimum switching time is 1.0 and the magnitude is 
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. After we reconstruct the output of the linear subsystem using the inverse of the estimated nonlinear function of Figure 3b, we estimate the following third order plus time delay model using the prediction error identification method [8] that guarantees optimal parameters that minimize the prediction error.
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Note the actual process of (8) and (9) can be equivalently rewritten as follows:
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From the comparison of (10) and (9), we can see the estimated linear subsystem is almost exact. And we compare the nonlinear function of the process (11) and that of the proposed method in Figure 3b. The identification result for the nonlinear function is also excellent.

4. CONCLUSIONS

We propose a new relay feedback identification method for Wiener-type processes. It can identify the ultimate information of the linear subsystem as well as the whole range of the nonlinear function corresponding to the activated process output from only one relay feedback test. Then, we can construct the simple nonlinear controller using the inverse of the nonlinear function. If we do additional tests, we can identify the more complicated linear subsystem using conventional linear system identification methods from the given process input and the reconstructed output with the inverse of the estimated nonlinear function.
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Figure 1. A simple Wiener-type nonlinear process (a) and the activated process output by the modified relay (b): relay output – solid line, process output – dotted line
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Figure 2 A simple nonlinear control structure using the inverse nonlinear function for the Wiener process (a) and the equivalent control structure when the nonlinear function is exact (b).

[image: image44.wmf]-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

output of linear subsystem

process output

[image: image45.wmf]-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-7

-6

-5

-4

-3

-2

-1

0

1

2

output of linear subsystem

proces output


                  (a)                                 (b)

Figure 3. Effects of high order harmonic terms on the estimation of the nonlinear functions (a) and the final identified nonlinear function (b): model - dotted line, actual process - solid line.
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