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1. Introduction
Numerical simulations provide a convenient tool for testing theory and for determining constitutive relations to be used in macroscopic description of suspensions. In particular, they are ideal for understanding how the behavior of suspensions, such as its rheology, depends on the nature of imposed flow and the microscale physics. 

We consider suspensions of spherical bubbles at large Reynolds numbers. The method for simulating such flows has been described in detail by Sangani and Didwania (1993) (henceforth referred to as I). These investigators considered the case of flow induced by the buoyancy force acting on the bubbles when the Reynolds number Re based on the radius and terminal velocity of bubbles is large compared to unity and the Weber number We is zero. In this limit the flow to leading order is irrotational and described by a velocity potential. This turned out to be a somewhat disappointing result in the sense that the experimental observations on the rise of bubbles do not show this behavior, at least in the industrially important range of 1-5 mm size bubbles in ordinary water. Thus, the simplifications made in I were perhaps too severe for such simulations to describe the behavior of more commonly occurring bubbly liquids. We believe that it would be worthwhile to continue the analytical investigation of the suspensions of spherical bubbles in the limit of large Re using the simulation method described in I. In particular, because of the relative ease with which the simulations of these suspensions can be carried out, we hope to use this model suspension to learn more about the correct form of the averaged equations in suspensions with significant inertial effects, the role of fluid dynamic induced fluctuations, and the stability theory of suspensions. In section 2 we briefly describe the numerical simulation procedure and in section 3 we present the results of simulations for dilute bubbly liquids

2. The simulation method 

The simulation method is described in detail in I. Here, we briefly summarize the method indicating some modifications we have made in the present study. We consider motion of N spherical bubbles of radius a placed within a unit cell of periodic array. The velocity w( of a representative bubble ( is written as a sum of the ensemble-averaged mixture velocity <u> and a relative velocity V:
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where x( is the position of the center of the bubble at time t. Similarly, the velocity of the fluid is written as a sum of <u> and u' where u' is assumed to depend only on the position and the relative velocities of the bubbles. Thus, by definition <u'>=0. In simulations we enforce this condition by requiring that the average of u' over the unit cell vanishes at any given instant. We are interested in a large Reynolds number situation where the hydrodynamic interactions are dominated by potential flow, and therefore we write
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subject to the boundary condition
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on the surface of bubbles. Here, n is the unit outward normal vector on the surface of the bubble (. As shown in Sangani, Zhang, and Prosperetti (1991) and in I, the velocity potential can be determined to a very good accuracy with a point-dipole approximation 
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where S1 is a Green's function for Laplace equation in a periodic domain (Hasimoto 1959, Sangani, Zhang, and Prosperetti 1991) and D( is the dipole strength. The condition that the average of u' over the unit cell must vanish is satisfied by taking (cf. I) 
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 where ( is the volume of the unit cell. To calculate the trajectory of bubbles we must apply force balance on each bubble (assumed to be massless).  The impulse defined by 
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plays a role analogous to the momentum of a particle in Newtonian mechanics. We write the force balance as
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where Fg =-4(a3 /3 g is a force due to buoyancy, Fv is a viscous force, F<u> is a force due to temporal and spatial variations in the ensemble-averaged velocity <u> of the mixture, Fc( is a force on the bubble during its collision with other bubbles, Fp( is a force due to potential flow interactions (cf. I), and the viscous force is evaluated using a method described in I. The main modifications in the present study are concerned with the evaluation of F<u> and Fc. In I we considered a special case of constant average velocity whereas in the present study we are interested in the case of simple shear. For this purpose we use a slightly modified version of the expression proposed by Auton, Hunt, and Prud'homme (1988) 
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where m=4((a3/3 is the mass of fluid having the same volume as the bubble and D/Dt =( /( t +<u>((is a time derivative following the average motion of the mixture. Finally, (4) also gives the correct lift force on a bubble in dilute dispersions in the presence of simple shear, for which the magnitude of vorticity is small compared to V/a where V is a characteristic magnitude of bubbles' relative velocity. Thus, we expect it to provide a very good approximation for ignited states. Note that for the case of an isolated bubble with velocity Vj(, the expression (4) reduces to the one given by Auton, Hunt, and Prud'homme (1988) upon substituting Ij (=mVj (/2. The collisional force Fc was evaluated in I by assuming the collision process to be instantaneous and momentum conserving. This has some difficulties in numerical implementation. To overcome this we used a soft core repulsive potential to model the collision process. Specifically, the collision force was taken to be 
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Here((( if bubbles ( and ( are not overlapping. Otherwise, (((=(c
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 where (c is a constant and 
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 is the component of the relative velocity V(-V ( along the line joining the position of the bubbles at the onset of overlap. The numerical algorithm consisted of determining the force on each bubble given position and impulse of all the bubbles in the suspension and integrating 
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using a fourth-order Runge-Kutta scheme.
3. Simulation results and kinetic theory for simple shear motion
In this paper we shall consider simple shear motion of dilute bubbly liquids with g=0 and <ui> =(x2 (i1. The distances are rendered non-dimensional with a, the velocity with (a, and the time with 1/(. Typical simulation results are illustrated in Figure 1 which shows velocity variance <V2> as a function of time for (=0.005 at three different Reynolds number Res=( a3 /(. These results are summarized as follows: (i) the final state for Res less than about 90 is quenched (very low variance) regardless of the initial conditions; (ii) the multiple steady states exist for 90<Res <Rec (( ) (e.g. Res =140 in Figure 1)--the final state is quenched or ignited depending on the initial conditions;(iii) the final state for Re>Rec (( )>90 (e.g. Res =170 in Figure 1)is ignited regardless of the initial conditions. Here, Rec (() is given approximately by Rec 3( =2( 104. It will help to have a qualitative understanding of the phenomenon. The steady state variance is determined by the balance between the energy input in shearing the dispersion and the viscous energy dissipation. The former can be approximated to equal (s* (2 while the latter to 12((na <V*2 >. Here, (s* is the (dimensional) dispersed-phase shear viscosity, n is the number density of bubbles, and <V*2> is the dimensional velocity variance. In the ignited state, the collision time (c =a/(( <V*2>1/2) is much shorter than the viscous relaxation time (v =(a2 /(18(), and the leading order velocity distribution as Res (( is isotropic Maxwellian. Thus we can estimate (s* from the kinetic theory of gases by taking the mass of bubbles to be their virtual mass m/2 and the mean free path to be a/( to yield (s*~(a<V*2>1/2. The energy balance then shows that <V2>~ (Res/( )2. In the quenched state, <V2 > is very small, and, consequently, (v<<(c. Thus, the majority of the bubbles move with the velocity of the fluid. The initial conditions influence the final steady state for intermediate values of Res by setting up the initial value of the collision time. At smaller Res, the viscous relaxation time is small enough to dissipate the fluctuations leading always to the quenched state while the fluctuations induced by the imposed shear are sufficient at large enough Res to eventually make (c<<(v. 
Figure 2 shows the results of simulations at other values of ( and Res .For small ( we expect only the quenched state when Res is less than 90 and multiple (quenched plus ignited) states for Res >90and (Res3 >3.231(183=18843. For each value of (, we carry out simulations at different values of Res with an initial variance of zero and determine the critical value of Res for which the final state is ignited. The pluses represent the results obtained by the simulations with N=32 and full hydrodynamic interactions together with the soft core repulsive potential for overlapping bubbles as described in Section 2 while the circles are determined using another program in which the hydrodynamic interactions are neglected, the collision is modeled by a hard-core repulsion, and N=100. The results for the latter were also confirmed to be free from finite N effect by a yet another method (direct simulation Monte Carlo) to be described elsewhere. We believe that the better agreement obtained with the full hydrodynamic interaction calculations represented by pluses is fortuitous, resulting probably from the use of soft core repulsive potential and smaller N.

4. Conclusion

In this paper we have addressed the problem of the dispersed-phase rheology in suspensions of spherical bubbles at relatively large Reynolds numbers. We found that the rheology is quite complex even when the microscale physics governing the bubble motion is considerably simplified in terms of lift and viscous forces. The key to understanding the results of simulations has been to appreciate the dependence of the dispersed-phase viscosity on its velocity variance(temperature). This dependence is nonlinear and gives rise to multiple steady states. The calculations presented here also show a need to include the energy balance and temperature in the averaged description of flows of suspensions. 
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\caption{Velocity variance as a function of time.}
\caption{Multiple steady states-ignited state transition. The solid curve 

is the theory prediction and circles and pluses are, respectively, the 

results of simulations with and without hydrodynamic interactions.}
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