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Introduction 
 For a safe operation of chemical process, it is important to detect faults, process upsets, or other special 
events as rapidly as possible and then to find and remove the factors causing those events. Until now, monitoring 
using multivariate statistical methods such as PCA have been modified and developed to analyze the high 
dimensional and correlated data [1,2].  
 It is known that many of the monitored process variables are not independent. They could be combinations 
of some independent components that may not be directly measurable. Independent component analysis (ICA) 
can find these underlying factors from multivariate statistical data. ICA is a recently developed method in signal 
processing where the goal is to find a linear representation of non-Gaussian data so that the components are 
statistically independent [3]. A number of ICA have been reported in speech processing, biomedical signal 
processing, feature extraction, financial time series analysis, data mining, and so on. Whereas PCA can only 
impose independence up to the second order (mean and variance) while constraining the direction vectors to be 
orthogonal, PCA imposes statistical independence up to more than second order on the individual component 
and has no orthogonality constraint [4]. Hence, ICA can reveal more useful information than PCA. Furthermore, 
the conventional SPM (statistical process monitoring) methods using PCA are based on the assumption that the 
measured values of product quality are normally distributed. However, such assumption is often invalid for the 
measurements gained from actual chemical processes because of their dynamic and nonlinear nature. In the 
present work, a new statistical monitoring method based on ICA and kernel density estimation [5] is proposed. 
For investigating the feasibility of the proposed method, its fault detection performance is evaluated and 
compared with that of PCA monitoring method by applying those methods to the simulation benchmark of 
biological wastewater treatment process. 
 
Independent Component Analysis (ICA) 
 To introduce the ICA algorithm, it is assumed that d measured variables  are given as linear 

combinations of m ( ) unknown independent components . The independent components and 
the measured variables are zero mean. The relationship between them is given by 
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is the residual matrix, and n is 
the number of sample. Here, we assume ; when  equals , the residual matrix, , becomes the 
zero matrix. The basic problem of ICA is to estimate the original components S or to estimate A from X without 
any knowledge of them. Therefore, the objective of ICA is to calculate a separating matrix W so that 
components of the reconstructed data matrix S, given as 
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becomes as independent of each other as possible. Using ICA algorithm, we can obtain the rows of S whose 
norm is 1.  
 The initial step in ICA is whitening, which transforms measured variables x(k) into uncorrelated variables 

z(k) with unit variance. The whitening matrix Q is given by TUΛQ 2
1−
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Λ  is 

diagonal matrix whit the eigenvalues of the data covariance matrix  and  is a matrix with the 
corresponding eigenvalues as its columns. By defining the whitening matrix as and B=QA, the relationship 
between z and s is given as. 
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Since s are mutually independent and  z are mutually uncorrelated, 
  { } { } TTTT kkEkkE BBBssBzz == )()()()( I= . (4) 
We have therefore reduced the problem of finding an arbitrary full-rank matrix A to the simpler problem of 
finding an orthogonal matrix B, which then gives  
  . (5) )()()( kkk TT QxBzBs ==
From Eqs. (2) and (5), the relation between W and B can be expressed as 
  . (6) QBW T=
 To calculate B, it should be updated so that  may have great non-Gaussianity. There are two common 
measures of non-Gaussianity: kurtosis and negentropy [3]. Kurtosis is sensitive to outliers. On the other hand, 
negentropy is based on the information-theoretic quantity of (differential) entropy. Tthe negentropy  can be 
approximated as follows [3]: 
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where  is assumed to be of zero mean and unit variance,  is a Gaussian variable of zero mean and unit 
variance, and G is any non-quadratic function. Hyvärinen and Oja (2000) suggests a number of functions for G: 
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where . Among these three functions,  is a good general-purpose contrast function and was 
therefore selected for use in the present study. 
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 Based on their approximate form for the negentropy, Hyvärinen and Oja (2000) introduced a very simple 
and highly efficient fixed-point algorithm for ICA, calculated over sphered zero-mean vectors . This 
algorithm calculates one column of the separating matrix B and allows the identification of one independent 
component; the corresponding IC can then be found using Eqs. (5). The algorithm is repeated to calculate each 
independent component. The algorithm is as follows, 
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Eqs. (15), (16) and (17). 
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2. Otherwise, output the vector . 
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 In order to estimate more than one solution, up to a maximum of m solutions, the algorithm can be run as 
many times as required. After one has estimated p vectors, , the decorrelation procedure entails two 

simple additional steps for . First, let 
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Note that the final vector  given by the algorithm equals one of the columns of the (orthogonal) mixing 
matrix B shown in Eq. (5). After calculating B, we can obtain demixing matrix W from Eq. (6). For more details 
on the FastICA algrothm, see Hyvärinen and Oja (2000). 

ib

 
Process Monitoring Statistics based on ICA 
 We can obtain , W ,and from applying ICA to the normal operating data. Then, they are separated 
into the deterministic part (B

B normalS
d , W , ) and excluded part ( , , ). The monitoring d dS eB eW eS
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statistics , , of normal operating 

condition are calculated and their confidence limits are obtained by kernel density estimation.  For on-line 
monitoring, new independent data matrices,  and S  can be obtained if new data X ( ) is 
transformed through the separating matrices and , i.e.,  and , 
respectively. After calculating the monitoring statistics for new data, they are compared against the normal 
operating data. 
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Illustrative Example 
 The proposed ICA monitoring algorithm is applied to the detection of various disturbances in the simulated 
data on the basis of benchmark simulation. The IAWQ model No. 1 and a ten-layer settler model are used to 
simulate the biological reactions and the settling process, respectively. Fig. 1 shows the flow diagram of the 
modeled WWTP system. Influent data and operation parameters developed by a working group on benchmarking 
of wastewater treatment plants, COST 624, are used in the simulation [6]. We used seven variables among many 
variables used in the benchmark to build monitoring system since they are typically monitored and important 
variables in real WWT systems. The variables are listed in Table 1. We used 14 days as a normal data set 
developed by the benchmark, where the training model was based on a normal operation period for one week of 
dry weather and validation data was used on data set for last 7 days. The internal disturbance was imposed by 
decreasing nitrification rate in the biological reactor, the specific growth rate for the autotrophs is decreased in 
benchmark. The autotrophic growth rate at sample 288 is decreased rapidly from 0.5 to 0.4 day-1 and linearly 
decreased from 0.4 to 0.2 day-1 until sample 480. In this case, as shown in Fig. 2, PCA indicates many false 
alarms even under normal operating data and cannot detect the internal disturbance when disturbance occurs 
since the periodic features of wastewater plant are dominant and indicate. The same condition is applied to ICA. 
In this case, the fault detection is allowable. The ICA monitoring charts are shown in Fig. 3. I2 value increases 
rapidly around sample 288 and reveals a diurnal variation, which indicates successive fault detection. And there 
is no false alarm under normal operating data. In Fig. 4, contribution plots for ICA monitoring charts are 
displayed. From contribution plot for I2 at sample 600, we can conclude that variable 1 (S-NHin ), variable 4 
(S-O3) and variable 5(S-NO2) are primarily contributed to the I2 statistic.  
 
Conclusions 
 This paper proposes a new monitoring approach using ICA method for multivariate statistical process 
control. Monitoring using ICA gives more sophisticated results rather than conventional method using PCA since 
ICA imposes statistical independence up to more than second order on the individual component and has no 
orthogonality constraint. Especially, when the measured variables have non-Gaussian distribution, monitoring 
using ICA with kernel density estimation can give better result. The proposed monitoring method is applied to 
the simulation benchmark of biological wastewater treatment process and shows the power and advantages of the 
ICA monitoring over PCA monitoring. 
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Table 1. Variables used in the monitoring of the 
benchmark model 
No. Symbol Meaning 

1 S-NHin Influent ammoniac conc. 

2 Qin Influent flow rate 

3 TSS4 Total suspended solid  
(reactor 4) 

4 S-O3 Dissolved oxygen conc. 
(reactor 3) 

5 S-O4 Dissolved oxygen conc. 
(reactor 4) 

6 KLa5 Oxygen transfer coefficient 
(reactor 5) 

7 S-NO2 Nitrate conc. (reactor 2) 
 

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

m = 1

m = 10

m = 6

Q0, Z0

Qa, Za

Qr, Zr
Qw, Zw

Qe, Ze

Qf, Zf

Qu, Zu

 

Fig.1. Process layout for the simulation 
benchmark. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. ICA monitoring charts: I2, Ie

2 and SPE 
plots when deteriorating nitrification occurs in 
benchmark simulation. 
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Fig. 2. PCA monitoring charts: T2 and SPE plots 
when deteriorating nitrification occurs in 
benchmark simulation. 
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Fig. 4. Variables contributing to the deviation in 
SPE at sample 60 

 


