Theories and Applications of Chem. Eng., 2002, Vol. 8, No. 2 4738

lolzz Adel el BAYE AL
A% FEE 2= A2A0MN 78 2Ro|=dxe] Tl

Electrostatic Interaction in a Microchannel and Gradient Diffusion in a
Concentrated Suspension of Spherical Colloids
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Introduction

The electrostatic interaction between two charged sphere immersed in an
unbounded electrolyte has been studied over the past 50 years[l,2]. Recently, it is
found that long-range electrostatic interactions can have a dramatic effect on fluid
transports in microchannels. Although the accuracy of the Poisson-Boltzmann(P-B)
theory has been examined, the effect of geometrical confinement on the interaction
still remains an open problem. The linearized form of the P-B equation has proven
useful in evaluating electrostatic interactions when the surface potential of suspended
particles is smaller than or comparable to the Boltzmann thermal potentiall3].

Another issue related to the electrostatic interaction is the gradient diffusion of
particles 1n a concentrated suspension which 1s an important behavior in
physicochemical micro—hydrodynamics[4]. The calculation of the gradient diffusion
coefficient is not a succinct problem because the calculation of multiparticle
Interactions 1is basically complicated. In this study, both the thermodynamic
coefficient and hydrodynamic coefficient have been evaluated as a function of particle
concentration.

Complex Fluids Flow through a Microchannel

When a charged surface is in contact with an electrolyte, the electrostatic charges
on the solid surface will influence the distribution of nearby ions in the electrolyte
solution. Then an electric field is established, where the charges on the solid surface
and the balancing charges in the liquid is called the Debye electric double layer.
Electrokinetics refers to those processes in which the boundary layer between one
charged phase and another is forced to undergo some sort of shearing process. An
understanding of the fundamental behavior of the fluid flow in microchannels is of
importance in the research fields of micro- and nanofluidics. Microchannels currently
have wide applications in the design and utilization of microfluidic devices, such as
diagnostic microdevices, biomedical microchips, microreactors, and other MEMS (micro-
electro mechanical system) devices.

The linearized P-B equation governing the electric field is given as

VI = APy, (1)
Here, the dimensionless potential denotes Zie/kKT and the inverse Debye double layer
thickness is defined by
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where nip is the concentration of type i ions in the bulk solution, Z; the valence of
type 1 ions, e the elementary charge, the dielectric constant, £ the dielectric constant,
and KT the Boltzmann thermal energy.
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Long-Range Electrostatic Interaction

The electrostatic interaction between dissimilar (bidisperse) particles shown in
Fig. 1 can be considered by applying the singularity method previously proposed as a
useful scheme for multisphere systems. In solving Eq. (1), both the constant
potential and the constant charge boundary conditions are used. Here, the boundary
condition with a constant charge density 0 is taken as

n-v¥ = ¢ on S, . 3)

From the singular solution to Eq. (1) for a point charge at the origin, each of the
dimensionless surface charge densities of the particles 1 and 2 are expressed as
follows:

o = ¥, (1+ xay) for sphere 1 (4a)
o = ¥, w(w) for sphere 2 (4b)
’ m

where m (= as/a;) means the ratio of the radius of two dissimilar particles, and a;
and az correspond to radii of particle 1 and 2, in respect. The singular solution for
point charge at the origin is easily defined, however, if multisphere interactions are
presented we should propose incorporating additional off-center singularities within
the spheres[5]. Based on the principle of superposition with both the known
contribution of singularities "¢ and the corresponding contributions from the
off-center singularities ¥, the specified surface potential at a surface point X; then
yields

ox) =n-vU(x) = ZN‘ln v ¥(x;) + aZ'Nn vU(x) j=1to M. (5)

The strengths of the singularities are found by minimizing the deviation from the
prescribed boundary conditions at a finite number of points on the surfaces of the
solids. Once the solution for the potential is obtained, the force vector F can be
calculated from the surface integration of normal component of Maxwell stress tensor
T, given by

FEfSAT- ndS, . 6)

Then, the interaction energy profile between pairs of bidisperse particles can be
obtained by integrating the force on the sphere as provided in Fig. 2.

Gradient Diffusion of Spherical Colloids

The diffusion coefficient of a particle in the bulk can be obtained from the
Stokes-Einstein equation as D, = KkT/6mna. Fig. 3 shows that, at finite
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concentrations, both colloidal interactions and hydrodynamic interactions modify the
dilute limit value. The generalized Stokes-Einstein equation valid over the entire
range of particle concentrations is used to evaluate the gradient diffusion coefficient,

_ o KO _ _ET OIIC) Ama®
DO = Dogiey = Bma KO 75C 3kT ™

where S(C) is the thermodynamic coefficient determined from the osmotic pressure [l
(C), and K(C) is the hydrodynamic coefficient. The osmotic pressure is expressed
with osmotic virial coefficients A, and As. The S(C) coinciding with the structure
factor can be derived in power series of the particle concentration as

S(C) = 1—24,C+ (243 — 3A)C* + O(CY) . (8)

Here, Az is represented by
_ 3 . 25 _ 3 _ _E(s)\1.2 9
A, = S5 [-e@)sas = 325 [[1-exp( 5 )]s ©)

where s is the center-to—center separation distance, g(s) the radial distribution
function, and E(s) the pairwise interaction energy mentioned above. The radial
distribution function can be determined by integral equations, perturbation methods,
and Monte Carlo simulations. Monte Carlo simulations are employed here, since they
enable the prediction of suspensions over the wide range of particle concentrations.

The hydrodynamic coefficient K(C) accounts for the fact that the drag force in
concentrated suspensions exerted on a single particle deviates from the Stokes law
due to the presence of neighboring particles[6]. This coefficient originally describes
the sedimentation velocity of an assemblage of spheres, which can be given for
ordered suspensions as,

KO =(1-5c"+ 30— c)f(1+ £ 7). (10)

In Fig. 4, the gradient diffusion coefficient are provided for the particle concentrations
ranging from a dilute limit to a high value. The dependence of the solution ionic
strength on the diffusion coefficient is weak for the particle concentrations up to
about 0.3, however, above 0.3 it shows a rise up behavior for 0.02 and 0.1 mM. The
diffusion coefficient increases with the decrease of the solution ionic strength, which
implies an enhancement in the particle diffusion.
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