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Introduction

The electrostatic interaction between two charged sphere immersed in an 

unbounded electrolyte has been studied over the past 50 years[1,2].  Recently, it is 

found that long-range electrostatic interactions can have a dramatic effect on fluid 

transports in microchannels.  Although the accuracy of the Poisson-Boltzmann(P-B) 

theory has been examined, the effect of geometrical confinement on the interaction 

still remains an open problem.  The linearized form of the P-B equation has proven 

useful in evaluating electrostatic interactions when the surface potential of suspended 

particles is smaller than or comparable to the Boltzmann thermal potential[3].    

Another issue related to the electrostatic interaction is the gradient diffusion of 

particles in a concentrated suspension which is an important behavior in 

physicochemical micro-hydrodynamics[4].  The calculation of the gradient diffusion 

coefficient is not a succinct problem because the calculation of multiparticle 

interactions is basically complicated.  In this study, both the thermodynamic 

coefficient and hydrodynamic coefficient have been evaluated as a function of particle 

concentration.

Complex Fluids Flow through a Microchannel

 When a charged surface is in contact with an electrolyte, the electrostatic charges 

on the solid surface will influence the distribution of nearby ions in the electrolyte 

solution.  Then an electric field is established, where the charges on the solid surface 

and the balancing charges in the liquid is called the Debye electric double layer.  

Electrokinetics refers to those processes in which the boundary layer between one 

charged phase and another is forced to undergo some sort of shearing process.  An 

understanding of the fundamental behavior of the fluid flow in microchannels is of 

importance in the research fields of micro- and nanofluidics.  Microchannels currently 

have wide applications in the design and utilization of microfluidic devices, such as 

diagnostic microdevices, biomedical microchips, microreactors, and other MEMS(micro- 

electro mechanical system) devices.

The linearized P-B equation governing the electric field is given as

(1)▽ 2Ψ = κ2Ψ .

Here, the dimensionless potential  denotes Zie/kT and the inverse Debye double layer 

thickness is defined by
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(2)κ = [ 2ni,bZ
2
i e
2

εkT ]
1/2

where ni,b is the concentration of type i ions in the bulk solution, Zi the valence of 

type i ions, e the elementary charge, the dielectric constant, ε the dielectric constant, 

and kT the Boltzmann thermal energy.  

Long-Range Electrostatic Interaction

The electrostatic interaction between dissimilar (bidisperse) particles shown in 

Fig. 1 can be considered by applying the singularity method previously proposed as a 

useful scheme for multisphere systems.  In solving Eq. (1), both the constant 

potential and the constant charge boundary conditions are used.  Here, the boundary 

condition with a constant charge density σ is taken as

(3)n⋅∇Ψ = σ        on SA .

From the singular solution to Eq. (1) for a point charge at the origin, each of the 

dimensionless surface charge densities of the particles 1 and 2 are expressed as 

follows:

(4a)σ1 = Ψ p,w (1 + κa 1)      for sphere 1

(4b)σ2 = Ψ p,w (
1 + κa 1m

m )      for sphere 2
where m (= a2/a1) means the ratio of the radius of two dissimilar particles, and a1 

and a2 correspond to radii of particle 1 and 2, in respect.  The singular solution for 

point charge at the origin is easily defined, however, if multisphere interactions are 

presented we should propose incorporating additional off-center singularities within 

the spheres[5].  Based on the principle of superposition with both the known 

contribution of singularities Ψ
c
 and the corresponding contributions from the 

off-center singularities Ψoc, the specified surface potential at a surface point xj then 

yields  

(5)σ(x j) ≡ n⋅∇Ψ s( x j) = ∑
N

i=1
n⋅∇Ψ

c
i ( x j) + ∑

αN

i=1
n⋅∇Ψ

oc
i ( x j)    j = 1 to M .  

The strengths of the singularities are found by minimizing the deviation from the 

prescribed boundary conditions at a finite number of points on the surfaces of the 

solids.  Once the solution for the potential is obtained, the force vector F can be 

calculated from the surface integration of normal component of Maxwell stress tensor 

T, given by

(6)F ≡ ⌠⌡SA
T⋅ n dSA .

Then, the interaction energy profile between pairs of bidisperse particles can be 

obtained by integrating the force on the sphere as provided in Fig. 2. 

Gradient Diffusion of Spherical Colloids

The diffusion coefficient of a particle in the bulk can be obtained from the 

Stokes-Einstein equation as Do = kT/6πηa.  Fig. 3 shows that, at finite 
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concentrations, both colloidal interactions and hydrodynamic interactions modify the 

dilute limit value.  The generalized Stokes-Einstein equation valid over the entire 

range of particle concentrations is used to evaluate the gradient diffusion coefficient,

 (7)D(C) = Do
K(C)
S(C)

 = 
kT
6πηa

K(C)[ ∂Π(C)∂C
4πa

3

3kT ]
where S(C) is the thermodynamic coefficient determined from the osmotic pressure Π

(C), and K(C) is the hydrodynamic coefficient.  The osmotic pressure is expressed 

with osmotic virial coefficients A2 and A3.  The S(C) coinciding with the structure 

factor can be derived in power series of the particle concentration as 

 (8)S(C) = 1 - 2A 2C + (2A
2
2 - 3A 3)C

2 + O(C 3) .

Here, A2 is represented by

(9)A 2 = 
3

2a
3
⌠
⌡

∞

0
[1-g(s)] s 2ds = 

3

2a
3
⌠
⌡

∞

o [1-exp (-
E( s)
kT )]s 2ds

where s is the center-to-center separation distance, g(s) the radial distribution 

function, and E(s) the pairwise interaction energy mentioned above.  The radial 

distribution function can be determined by integral equations, perturbation methods, 

and Monte Carlo simulations.  Monte Carlo simulations are employed here, since they 

enable the prediction of suspensions over the wide range of particle concentrations.

The hydrodynamic coefficient K(C) accounts for the fact that the drag force in 

concentrated suspensions exerted on a single particle deviates from the Stokes law 

due to the presence of neighboring particles[6].  This coefficient originally describes 

the sedimentation velocity of an assemblage of spheres, which can be given for 

ordered suspensions as,  

(10) K(C) = (1 - 3
2
C 1/3 +

3
2
C 5/3 - C 2)/ (1 + 2

3
C 5/3) .

In Fig. 4, the gradient diffusion coefficient are provided for the particle concentrations 

ranging from a dilute limit to a high value.  The dependence of the solution ionic 

strength on the diffusion coefficient is weak for the particle concentrations up to 

about 0.3, however, above 0.3 it shows a rise up behavior for 0.02 and 0.1 mM.  The 

diffusion coefficient increases with the decrease of the solution ionic strength, which 

implies an enhancement in the particle diffusion. 
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Fig. 1. Schematic of dissimilar spherical colloids 

confined in a microchannel.

   
Fig. 2. Dimensionless energy profiles for 

particle-particle interaction for different 

sizes with constant charge boundary 

conditions. 
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Constant charge boundary condition

a2 = 80 nm4)

a2 = 40 nm3)

a2 = 20 nm2)

a2 = 10 nm1)

sphere - wall

κa1 = 2.06 ( = KCl 1.0 mM)
a1 = 20 nm, ψ*1 = ψ*2 = 1

1) σ*1 = 3.06, σ*2 = 4.06  2)  σ*1 = 3.06, σ*2 = 3.06
3) σ*1 = 3.06, σ*2 = 2.56  4)  σ*1 = 3.06, σ*2 = 2.31

Fig. 3. Schematic illustration of gradient 

diffusion in a concentrated suspension of 

spherical colloids

     

Fig. 4. The plots of dimensionless 

gradient diffusion coefficient vs. particle 

concentration with different Debye 

lengths at pH 6.0.  Dotted curves mean 

the predictions for dilute limit case.
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