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Introduction

Most of chemical plants are equipped with compression systems of various types and capacities for pressurizing air or gases. These compression systems can be categorized into centrifugal, reciprocating, and rotary compressors or blowers and are selected for use according to given process conditions (O’Neill, 1993). Among these compression systems, the multistage centrifugal compressors or blowers are widely used for supplying a large amount of compressed air or gases to various chemical processes such as fluidized catalytic-cracking units, terephthalic acid plants, polyethylene processes, sulfur-recovery plants, and so forth. Sometimes, a chemical process consumes a great portion of the total energy usage only to drive the compression systems, depending on the size of the process. For example, it has been reported that a terephthalic acid plant uses about 50 - 55 percents of the total electric power used by the whole plant to drive the air compression systems. This situation gives an opportunity to us for saving a considerable amount of energy by moving the operating conditions of the compression systems to the optimal points. As the first step to achieve this goal, it is important to monitor and predict the compressor performance indexes, such as polytropic or overall efficiencies, continuously as a function of various operating variables.

In this study, the performance prediction model is developed using Artificial Neural Network (ANN) algorithm (Hagan et al., 1996) and Partial Least Squares (PLS) method (Geladi et al., 1986) for accurately predicting the overall efficiency and the actual power consumption/generation of a multistage compression system that consists of the multistage compressor, electric motor/generator, and the multistage expander/turbine as a driver.

Air Compression Systems
Figure 1 shows a standard configuration of an air compression system today consisting of the compression stages to increase the pressure of air and the electric motor and/or gas expander (or steam turbine) to drive the shaft of the compressor. The compressor consists of one or more compression stages in series with or without the inter-cooling systems between the stages. The gas expender is comprised of one or more expansion stages in series with or without the re-heating systems between the stages and converts the potential energy of gas or steam to the kinetic energy to drive the shaft of the compressor. The electric motor generates the deficient amount of the force required for driving the compressor along with the expander or alone. Some compression systems (e.g. the air bower of a fluidized catalytic cracking unit) are equipped with an electric generator instead of the electric motor since the power generated by the expander or steam turbine is more than that required for driving the compressor (Han et al., 2001). There are several auxiliary components including the speed reducing gears, couplings, and bearings which act as the medium for transferring power among the compressor, expander, and the electric motor and which can be the causes of power loss. 
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Figure 1. Schematic of a typical compression system.

Modeling of Air Compression Systems

In operation of compression systems, it is important to identify the overall efficiency in terms of the process variables so as to minimize the net power consumed by the electric motor or to maximize the net power generated by the electric generator. Therefore, the major modeling aspect of the compression system is to accurately predict the overall efficiency (
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) from which the actual power consumption rate by the electric motor (
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) and the actual power generation rate by the electric generator (
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) can be estimated by the following relationships, respectively:
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where 
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 denotes the minimum work required by all the compression stages 
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 for compression of air under an adiabatic and reversible condition and 
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 is the maximum work generated by all the expansion stages 
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, which can be theoretically obtained by the ideal expander under an adiabatic and reversible condition:
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In the above equations, 
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 is the discharge flow rate of the air exiting the compression stages and 
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 the gas or steam flow rate into the expansion stages. 
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 are the pressures through the compression and expansion stages, respectively. 
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 are the molecular weight, universal gas constant, adiabatic exponent, and compressibility factor, respectively. In this study, the ideal compression system (the overall efficiency of which is equal to one) follows from the assumptions that the there are no friction losses, leakage, and mechanical losses due to bearings, seals, gears, couplings, and the electric motor or generator. However, actual compression systems require more power than the ideal compression system and thus the overall efficiency is typically quite less than one. Once the overall efficiency of a compression system is predicted, the actual power consumed by the electric motor or that generated by the electric generator can be directly estimated using the Equations (1) - (4). However, the overall efficiency cannot be accurately predicted using a simple regression model based on the polynomial equations and system design data since the actual power consumption/generation rates and thus the overall efficiency are functions of the various process variables and ambient conditions such as the air flow-rate, the suction and discharge pressures and temperatures, humidity and ambient temperature, rotating speed of the compressor and expander, and so forth. Thus, in this study, two popular empirical modeling tools are employed for predicting the overall efficiency: 1) partial least squares method as a linear modeler and 2) feed-forward neural network as a nonlinear modeler. The target values for training PLS and ANN models are can be given by 
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 for the compression system with an electric motor and 
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 for that with an electric generator.

Results and Discussion

One of the compression systems, which are used for supplying the compressed air for oxidation of p-Xylene at the Ulsan plant of Samsung Petrochemical Company (SPC), consists of four-compression stages, two-expansion stage, and an electric motor. A total of 17 variables are used as the independent variables in modeling the compression system to predict the overall efficiency and the actual power consumption by the electric motor.

Figure 2 shows the prediction results that compare the predicted values obtained from the PLS model with the measured ones and Figure 3 from the ANN. The performance of the ANN model (RMSE = 31.7 for the actual power) is somewhat better than that of the PLS (RMSE = 77.8 for the actual power). However, the PLS model also gives a good and acceptable modeling performance, although the linear PLS model can capture only the linear relationships between process variables.

Conclusions

The compression systems, which are used for supplying the compressed air to chemical processes, were modeled using a partial least squares method and an artificial neural network algorithm. Both PLS and ANN showed good modeling performances, but the ANN was slightly better than the PLS since the ANN is able to capture the nonlinear relationships between operating variables. The developed performance prediction model helps the operators to move the operating condition to the optimal one and can be used as a core model of an optimization framework for compression systems.
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Figure 2. Comparison between the measured and predicted values using PLS model.
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Figure 3. Comparison between the measured and predicted values using ANN model.
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