TRS FT–IR Spectroscopy of Surface Intermediates of $\rm C_2H_4$ Hydrogenation over $\rm Pt/Al_2O_3$ Catalyst under Reaction Conditions

<u>고문규</u>*, Heinz Frei¹ 건양대학교 환경화학공학과;

¹Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California

(mkko@kytis.konyang.ac.kr*)

Time-resolved rapid-scan FT-IR spectra of ethylene hydrogenation over alumina-supported Pt catalyst at 200°C were recorded under continuous H_2/N_2 flow and pulsed release of C_2H_4 (30 millisecond duration). Two surface species were observed, namely ethylidyne (CH₃CPt₃) with peaks at 2880 and 1339 cm⁻¹ (lifetime 300 ± 50 msec), and a substantially shorter-lived intermediate with an intense band at 1200 cm⁻¹ and weak absorptions in the 2875-2860 cm⁻¹ region (lifetime around 100 msec). Comparison of the C_2H_4 + H_2 results with those of experiments using D_2 or C_2D_4 suggests that the 1200 cm⁻¹ species is a surface ethyl intermediate (CH₃CH₂Pt). This is the first observation on the lifetime of surface ethyl species under reaction conditions. The rise of the final ethane product, monitored by the v(CH) absorption at 2893 cm⁻¹ was found to reach a maximum already in the first recorded time slice. This suggests that the observed CH₃CH₂Pt species is a surface-trapped form of the kinetically relevant, only weakly interacting C_2H_5 radical intermediate.