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Abstract

The experimental implementation of model predictive control Algorithm to the inverted 

pendulum is presented. he Actuator constraint is also incorporated via exterior penalty 

function. The key point in this algorithm is to reduce the error at the end of the prediction 

horizon rather than tries to find the optimal solution. This reduce the computational load and 

allows for real-time implementation.

1. Introduction

  Model uncertainty and external disturbances are important concerns in model predictive 

control (MPC) and widely investigated in recent years. MPC is a feedback control scheme that 

generates the control action based on the finite horizon open loop optimal control with the 

measured state as the initial state. MPC offers the possibility of the incorporating control and 

state constraints which few feedback control methods can claim to do. MPC was first 

proposed for the linear systems [1, 2]. and later extended to nonlinear systems [3, 4, 5, 6]. It 

has been especially popular in process control where slow system response allows time for 

the on-line optimal control computation. However, due to the computational load, application to 

systems with fast time constant still elusive. We have proposed an NMPC scheme in [7] 

which only takes a finite number of newton steps in each sampling period instead of solving 

the complete optimal control problem.

  For the real-time implementation, MATLAB xPC target was used as the real time 

computation platform. And the used inverted pendulum was made by Realgain Co.

2. Nonlinear Model Predictive Control (NMPC)

The algorithm is based on the resul in [7]. The basic idea is simple: the open loop control 

law iteration is excuted with the current state as the initial state and λ in current iteration as 

the initial guess. Then a fixed number of Newton-steps is taken. The resulting control is 

applied. The process repeats at the next sampling.

2.1 Description of the NMPC Algorithm

 For the NMPC implementation, we use the pulse basis for discretization.  This is done   due 
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to the need for a moving horizon.  The extension to other basis for approximation is currently 

under investigation. 

  To describe the algorithm analytically, consider a discrete nonlinear system (obtained 

through, for example, finite difference approximation of a nonlinear affine control system):

                           xk+1 = f (xk) + g (xk )uk                             (1)

where xk   ∈ ℜ
n  and uk  ∈ ℜ

m. Let the prediction horizon be M. Denote the predictive 

control vector at time k  by u k.M  :

                   u k.M = [u 1 (k),.....,uM (k)], u k,M  ∈R
m․M
 ․            (2)

Let ΦM (x k, uk,M )   be the state at the end of the prediction horizon, xk+M,  starting from xk   

and using the control vector uk,M    The predicted state error is then 

                            eM(k) =ΦM (x k, uk,M )-xd․                         (3)

The main idea of the algorithm is to simultaneously perform the open loop iteration over the 

prediction horizon and apply the updated control to the system at the same time. 

The implementation of the algorithm can be summarized as follows:

  1. At the initial time with the given initial state x 0, choose the initial guess of the          

predictive control vector u 0,M․ Also compute the equilibrium control, u
*  from

                               f (xd ) + g (xd)u
*= xd                            (4)

  2. For k ≥ 0,

      (a) Calculate one Newton-step control update:

                   v k,M= u k,M-α k(▽ uk,M ΦM (xk, uk,M ))eM (k)․                 (5)

          The gain, ak, is found based on Amijo's rule to ensure predicted error is           

    strictly decreasing. This can be done as long as the gradient matrix is               

non-singular.

      (b) Shift the predictive control vector by 1 step (since the first element will be         

     used for the actual control) and add the equilibrium control at the end of the            

vector:

                               u k+1,M = G v k,M+Fu
*                            (6)

          Where G ∈R mM×mM  and F ∈R mM×m  are defined as

G = [ ]0m(M-1) *m Im(M-1)
0m *m 0m *m(M-1)

,

F = [ ]0m(M-1) *m
Im

      (c) Compute the control, u(k)  to be applied as 

                                   u(k) = P 1 V k,M
                               (7)

          where P 1 = [ Im 0m×(M-1)m  ]․

      (d) Repeat Step 2a-2c at the next time instant.
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Remarks:

  1. In the above algorithm, the control constraint can be incorporated through exterior        

penalty functions, : z(u)

                            g(u)= {
0 |u|≤u max

ϒ(u-u max )
2 u>u max

ϒ(u+u max )
2 u<-u max

․                  (8)  

     The constraint is imposed at the discrete time points, { t i}, i = 1,....,M, so the           

overall penalty function is 

                                z(u)= ∑
M

i=1
g(u(t i)).                               (9)

     The Newton update law(5) now needs to be modified to drive (e,z)  to zero:

                          v k,M= u k,M-α k( [ ]ιϛ )eM (k)․                         (10)  
     where ϛ  is the gradient matrix of z  with respect to u  and ι  is               

 ▽ uk,M ΦM (xk, uk,M )․

  2. The above iteration strategy is based on the optimal control problem where the          

only cost is the final state error.

  3. For stability, the non-singularity condition of the gradient matrix is needed [7].

  4. The parameters that affect the performance of this algorithm are:

     ∙Prediction horizon M: This is determined from T/ts where T is the horizon time       

  and ts is the sampling rate. Large T is beneficial in keeping u within the               

constraint but implies heavier computation load in real-time. Small ts is important

       to keep the approximation error small, but it also leade to large N and heavier

       real-time computation load.

     ∙Initial predictive control vector, u 0,M: Without any a priori insight, this can just       

  be chosen as a zero vector. If some performed, it can be used as the initial             

guess.

3. Hardware

  The feedback NMPC control is implemented using MATLAB xPC target with Real-Time 

Workshop and simulink Toolbox from mathworks, Inc. The incremental encorder board is 

PCI-QUAD04 from Measurement Computing, Corp. The D/A board is PLC-816 from 

Advantech Inc.

4. Results

  After tuning the controller parameters using simulation, parameter was chosen

    M = 80, T = 0.4s, Ts = 5ms

Figure 1 shows the simulation result.
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        Fig.1. Experimental Response with NMPC
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