Architecture of Silica-Intercalated Hydrotalcites with Porous Structure

<u>김명훈</u>*, 장석흥¹, 강일모², 송윤구², 이영호³, 박진원¹, 이명수 연세대학교 화학과; ¹연세대학교 화학공학과; ²연세대학교 지구시스템학과; ³요업기술연구원 (ecomaterials@yonsei.ac.kr*)

Hydrotalcites are formally derived from layered double hydroxides (LDHs), general formula $[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}](A^{n-})_{x/x} \bullet mH_{2}O$, consisting of positively charged brucite, $Mg(OH)_{2}$, and the charge compensating interlayer exchangeable anions. The anion exchangeable LDHs with positively charged lamellar and exchangeable hydrate gallery have attracted much attention as a starting material of pillared layered solid to mimic zeolite-type structure possessing larger and more modifiable pores and active sites.

Under mild temperature, Si-intercalated hydrotalcites, $SiO_2/LDH=(0.1-1)$, were prepared successfully as mesopore framework pahse at 0.4–0.8 °PXRD pattern and about 450 m²•g⁻¹ and 0.35 cm³•g⁻¹ at BET surface area and pore volume. The intercalation of silicate anions in hydrotalcite exhibited more thermal stability to 550°C than the lamellar structure being maintained up to 400°C. These suggest the formation of new pore framework by a strong interaction of silicate anions in the LDH inner–surface with the interlayer carbonate or hydroxyl groups.