Design of AI Controllers for Multivariable Bioprocesses

<u>류 매</u>, 한 신¹, 김동진², 한현각³, 박 현⁴, 가강현⁵, 박원철⁵, 박찬영^{1,*} 효성 중앙연구소; ¹전남대학교 공과대학; ²금릉실업; ³순천향대학교; ⁴산림청산림정책팀; ⁵국립산림과학원 (cypark@chonnam.ac.kr*)

The system uses a recursively learning fuzzy algorithm to optimizing the control of the temperature in the fermentor. Here the temperature responded in two different ways in a 7°C set point change depending on the difference in the temperature of the ambient and the fermentor. If the set point temperature of the fermentor was different in less than 10°C from the room temperature, the fermentor had kept the temperature within 99.90 percent of the set point in 4 minutes. Meanwhile the difference had been much greater than 10°C, the overshoot reduced to less than 0.1°C. The On–Off control for the pH in the fermentor was thought to be enough. The pH had reached in less than one minute where the set point change had been 1 pH. Since the pH sensor's response time was too long, the overshoot led to a 0.2 pH. After the overshoot the pH waved within 0.1 pH of the set point. The oscillation in a 0.1 pH is normally endurable in many bioprocesses.

In conclusion, the Fuzzy algorithm of the system presented in this work would be utilized as alternative control device for the other bioprocesses.