Combined Reforming of Methane over Nano-sized Ni Catalysts Supported on MgO-Al₂O₃

<u>구기영</u>, 노현석¹, 서동주¹, 서유택¹, 서용석¹, 정진혁², 이득기³, 박승빈, 윤왕래^{1,*} 한국과학기술원; ¹한국에너지기술연구원; ²경북대학교; ³광주대학교 (wlyoon@kier.re.kr^{*})

Combined steam and carbon dioxide reforming of methane has come to attention on account of the fact that adequate H_2/CO ratios in synthesis gas can be controlled for application of oxo-synthesis and Fischer-Tropsch process. In this study, H_2/CO ratio of 2 was achieved in combined reforming of methane over Ni/MgAl₂O₄. The Ni/MgAl₂O₄ catalyst was prepared by an incipient wetness method and characterized by XRD, BET and H_2 -TPR. The reaction was performed with the ratio of $(H_2O+CO_2)/CH_4$ of 1.2 at 800 °C. To optimize the condition of reforming, the ratio of H_2O/CO_2 as oxidative species was changed from 2 to 3. Under the condition of GHSV = 132,702 ml/h g_{cat}, Ni/MgAl₂O₄ catalyst exhibited good catalytic activity and stability compared with commercial catalyst (Sud-chemie). In addition, the effect of pre-calcination temperature on the catalytic stability was investigated at GHSV = 265,404 ml/h g_{cat}. The catalytic stability increases with an increase of pre-calcination temperature.