Photocatalytic hydrogen production from water-methanol mixtures over Pt/Ru₂O/ PbBi₂Nb₂O₉ under visible light irradiation (λ>420 nm)

김현규^{1,*}, 정의덕¹, 김해진², 박혁규^{1,3}, 홍석준⁴, 지상민⁴, 배상원⁴, 장점석⁴, 이재성⁴
¹한국기초과학지원연구원 부산센터;
²한국기초과학지원연구원 미래융합연구실;
³부산대학교 물리학과; ⁴포항공과대학교 화학공학과
(hhgkim@kbsi.re.kr*)

Perovskite-type oxide materials based on transition metals with d(0) electron configuration such as NbV, TaV, and TiIV are efficient photocatalysts for overall water splitting with high quantum yields. Very recently, we have succeeded in fabricating an undoped, a single-phase oxide photocatalyst, $PbBi_2Nb_2O_9$, an Aurivillius-phase perovskite, which is an efficient photocatalyst for decomposition of water into O_2 or H_2 under visible light irradiation. We also have succeeded in fabricating a novel configuration of composite solids designated as photocatalytic nanodiodes (PCD) formed by p- and n-type semiconductors. Here we report Photocatalytic hydrogen production from water-methanol mixtures over $Pt/Ru_2O/PbBi_2Nb_2O_9$ under visible light irradiation (λ >420 nm).