Sequestering Carbon Dioxide into Complex Structures of Naturally Occurring Gas Hydrates

<u>박영준</u>, 김도연, 이종원¹, 허대기², 박근필², 이재형², 이 흔* 한국과학기술원; ¹공주대학교; ²한국지질자원연구원 (h_lee@kaist.ac.kr*)

Large amounts of $\mathrm{CH_4}$ in the form of solid hydrates are stored on continental margins and in permafrost regions. We explore here the swapping phenomenon occurring in SI and SII $\mathrm{CH_4}$ hydrate deposits through spectroscopic analyses and its potential application to $\mathrm{CO_2}$ sequestration at the preliminary phase. The present outcome of 85% $\mathrm{CH_4}$ recovery rate in SI $\mathrm{CH_4}$ hydrate achieved by the direct use of binary $\mathrm{N_2}$ + $\mathrm{CO_2}$ guests is quite surprising when compared with the rate of 64% for a pure $\mathrm{CO_2}$ guest attained in the previous approach. In addition, the simultaneously-occurring dual mechanism of $\mathrm{CO_2}$ sequestration and $\mathrm{CH_4}$ recovery is expected to provide the physicochemical background required for developing a promising large-scale approach with economic feasibility. In the case of sII $\mathrm{CH_4}$ hydrates, we observe a spontaneous structure transition of sII to sI during the replacement and a cage-specific distribution of guest molecules. A significant change of the lattice dimension due to structure transformation induces a relative number of small cage sites to reduce, resulting in the considerable increase of $\mathrm{CH_4}$ recovery rate.