High-throughput-screening of novel Cathode materials by Combinatorial Method

<u>선은정</u>, 우성일* 한국과학기술원 초미세화학공정센터(CUPS) (siwoo@kaist.ac.kr*)

 ${\rm LiCoO_2}$ has a reasonable capacity and high safety performance. However, due to its toxicity and high cost, the research of other materials, like ${\rm LiNiO_2}$, and ${\rm LiMn_2O_4}$, are risen for alternating the ${\rm LiCoO_2}$. But difficulty of synthesis in ${\rm LiNiO_2}$ and capacity fading in ${\rm LiMn_2O_4}$ induced new type compound ${\rm LiCoO_2}$ - ${\rm LiNiO_2}$ - ${\rm LiMn_2O_4}$ combi-arrays.

 ${\rm LiCoO_2-LiNiO_2-LiMn_2O_4}$ combi arrays are consistently deposited by co-sputtering system. So, we can obtain various compositions in the one ${\rm Pt/TiO_2/SiO_2/Si}$ wafer. With obtaining various compositions in lithium secondary thin film battery, we can find the composition which is behaved good performance and less reactive with electrolyte compare to ${\rm LiCoO_2}$. Thin films prepared by co-sputtering system and were investigated at various post annealing temperatures such as $600^{\circ}{\rm C}$, $700^{\circ}{\rm C}$, and $800^{\circ}{\rm C}$. The thin films were analyzed by micro-beam XRD. And patterned Pt which was used current collector of cathode material was successfully fabricated by MEMS technique. The current collectors were consisted of 7×7 dots. So, we can realize high-throughput-screening of novel cathode materials.