Conductivity studies on ceramic Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃-filled PEO-based solid composite polymer electrolytes

왕옌제, 김덕준* 성균관대학교 (djkim@skku.edu*)

For the use of $Li_{1,3}Al_{0,3}Ti_{1,7}(PO_4)_3$ as a lithium fast ionic conductor (FIC) to produce the best conductivity in Li $_{3-2x}$ (Al $_{1-x}$ Ti $_x$)₂(PO₄)₃ (x=0.55 to 1.0), Li $_{1.3}$ Al $_{0.3}$ Ti $_{1.7}$ (PO₄)₃-filled, PEO-based, composite polymer electrolytes (CPE) films were prepared by a solution-cast technique and their characteristics were investigated by several experimental techniques including X-ray diffraction (XRD), infrared (IR) spectra, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). As measured by electrochemical impedance spectrum (EIS) measurement, the temperature-dependent ionic conductivity of PEO-Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃ film with EO/Li=16 was maximized at 2.631×10^{-6} S/cm at room temperature and at 1.185×10^{-4} S/cm at 343 K, while the ionic conductivity of the PEO-LiClO₄-Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃ film with EO/Li=8 was maximized 7.985 $\times 10^{-6}$ S/cm at room temperature and at 1.161×10^{-3} S/cm at 373K when $\text{Li}_{1.3}\text{Al}_{0.3}\text{Ti}_{1.7}(\text{PO}_4)_3$ content was 15 wt.%.

28