고분자 분리막의 기체투과 특성 예측 모델식 개발

<u>김종환</u>, 배경철, 박상진^{*} 동국대학교 화학공학과 (sipark@dongguk.edu*)

Thermodynamic Modeling for Gas Permeability Prediction of Polymeric Membrane

Jonghwan Kim, KyungCheol Bae, Sanjin Park^{*} Dept. of Chemical Engineering, Dongguk University (sjpark@dongguk.edu*)

서론

분리막이란 2상 사이에서 물질의 이동을 선택적으로 제한하는 기능을 갖는 고분자 재 질의 계면(Interphase)이라고 정의될 수 있다. 최근 산업의 고도화 및 다변화로 인한 고순 도, 고품위의 제품이 요구됨에 따라 분리공정은 대단히 중요한 공정으로 인식되고 있어 화학공업, 식품공업, 약품공업 등의 공업분야 뿐만 아니라 의료, 생화학 및 환경분야에 이르기까지 중요한 연구과제가 되고 있다.

막을 이용한 분리 공정은 상(phase)변화가 없고 낮은 에너지 소비, 장치의 간소화, 큰 선택성, 가공의 용이성, 낮은 투자 및 운용비용 등 여러 가지 장점으로 인하여 다른 방법 들에 비해 분리가 간단하다는 장점 때문에 여러 분야에서 광범위하게 응용되고 있다.

기체 분리막을 생산하여 공정에 사용하기 위해서는 원하는 투과 특성을 만족하여야 하 므로 본 연구에서는 특정 기체 분리막의 실험결과를 획득하여 열역학적으로 고찰, 분석 후 실험 데이터의 reduction 및 regression을 통하여 온도, 압력 등의 외부 조건과 기체분자 의 열역학적 특성값에 따른 기체 투과특성 예측식을 개발하였다. 이렇게 개발된 예측식 으로 구한 값과 실험데이터를 비교하여 객관적 신뢰성을 확인하였다. 이로 인하여 기체 분리막의 종류와 각각의 기체의 열역학적 특성값(o, ɛ/k)으로 투과특성을 알 수 있었다.

기체투과모델

몇몇의 분리막의 투과 모델은 열역학적 그리고 통계적으로 역학적 원리에 기본을 두고 있고, 또 다른 투과 모델들은 분리막 재료의 물리적 특성과 관찰되어지는 투과 현상의 상 호관계에 기본을 두고 있는 경우도 있다. 이러한 투과 모델들은 투입되는 물질에 따라 분 류되는데, 막을 통해 액체가 분리되는 경우에는 membrane - solution system의 type에 의존 하여 대부분의 투과 모델이 표현될 수 있다. 그런데 막을 통한 기체 분리되는 경우는 한 개의 모델로 기술된다. solution - diffusion model과 이를 응용하여 modification된 solutiondiffusion - imperfection model이 막을 통한 기체 분리를 가장 잘 기술할 수 있다.

본 연구에서는 적용한 solution-diffusion model은 3단계 과정으로 막을 통한 기체의 투과 가 이루어지는데 막으로의 기체의 sorption(1) 막 양쪽의 농도차이로 막을 통한 diffusion (2) 반대쪽에서의 desorption(3)의 3단계로 되어 있다. sorption모델은 투과 기체와 막의 상 호작용 열역학에 기초를 두고 있고 diffusion 은 Fick의 법칙에 의해 표현되는 모델이다.

기체투과의 온도영향

막에 대한 기체의 용해도는 막과 기체의 특수한 상호작용(인력)과 막의 유효한 여유공 간에 크게 의존하며, 기체의 Lennard-Jones potential 이나 끓는점, 임계점에도 의존한다. 일 반적으로 기체의 용해도나 확산 및 투과에 대한 온도의 영향은 반비례하는 경향을 나타 낸다. 용해도 계수 S, 확산계수 D, 기체투과도 S에 대한 온도에 영향은 아래의 Arrhenius

화학공학의 이론과 응용 제12권 제1호 2006년

식의 형태로 표현될 수 있다.

$$S = S_0 \exp(-\Delta H_S / RT) \tag{1}$$

$$D = D_0 \exp(-E_D/RT) \tag{2}$$

$$P = P_0 \exp(-E_P/RT) \tag{3}$$

여기서 S₀는 온도에 무관한 용해도 상수이고 ΔH_s는 용해 엔탈피 변화이다. 기체의 확 산은 온도의존성은 열적으로 활성화된 과정으로 고려되는 막을 통한 기체분자의 운동과 같은 관계의 Arrhenius 식의 형태로 표현될 수 있고 D₀는 pre exponential factor, E_D는 확산 활성화에너지이다. 활성화에너지부분은 기체의 질량보다는 크기에 온도영향을 줌으로써 기체투과특성에 영향을 준다. 확산은 용해도와 투과도에 비교하여 온도에 매우 민감한 매개변수이다. 확산 계수와 용해도 계수의 온도의존성에 관한 식을 합치면 기체투과도의 온도의존성식은 (3)식과 같다. 여기서 P₀는 pre exponential factor이고 E_P는 E_D와ΔH_s의 합 으로 표현되는 투과 활성화에너지이다. 일반적으로 온도가 증가함에 따라 투과도는 증가 한다.

예측식과 Parameter의 결정

기체의 용해도, 확산도 및 투과도의 온도에 의존하지 않는 S₀, D₀와 ΔH_s, E_D등을 투과 기체의 물성과 열역학적 성질을 이용하여 관계식을 유도할 수 있다. 여기서는 투과기체 의 L-J Kinetic diameter, σ(Å)와 L-J Minimum Potential Energy, ε/k(=ε*, K)를 투과기체의 S₀, D₀, ΔH_s, E_D와의 관계로 특성을 예측할 수 있도록 하였다. S는 S₀를 σ의 1차식으로 Δ H_s/R를 ε*의 3차식 형태인 식으로 결정하였고, D는 D₀를 σ의 2차식으로 E_D/R는 S와 마찬 가지로 ε*의 3차식 형태로 결정하여 parameter를 구하려고 했다.

$$S = (a_0 + a_1 \sigma) \exp\left(-(b_0 + b_1 \varepsilon^* + b_2 \varepsilon^{*2} + b_3 \varepsilon^{*3})/T\right)$$

$$\tag{4}$$

5

ō

 $D = (a_0 + a_1\sigma + a_2\sigma^2) \exp(-(b_0 + b_1\varepsilon^* + b_2\varepsilon^{*2} + b_3\varepsilon^{*3})/T)$

Figure 1 Experimental and predicted Solubility in standard PDMS membrane

Cl₂ at 2ba

O₂ at 2ba

N at 2ba

H₂ at 2ba

Cl₂ at 2ba

O₂ at 2bar

N. at 2ba

(5)

Figure 2 Experimental and predicted Diffusivity in standard PDMS membrane

화학공학의 이론과 응용 제12권 제1호 2006년

$$P = (a_0 + a_1\sigma + a_2\sigma^2 + a_3\sigma^3) \exp\left(-(b_0 + b_1\varepsilon^* + b_2\varepsilon^{*2} + b_3\varepsilon^{*3})/T\right)$$
(6)

Figure 3 Comparison between Exp. P and Pred. S × Pred. D

결과 및 고찰

실험데이터와 예측식으로 구한 값의 AAD(Average Absolute pecent Deviation)를 살펴보 면 Table 1.과 같고 AAD를 표현하는 식을 (7)식과 같다. AAD를 확인한 결과 3% 이내로 나타나며 예측 모델식이 투과특성값을 잘 표현하는 것을 보여준다. 이를 비교한 그림이 Figure 4 ~ Figure 7에 나타내었다.

$$AAD = \frac{1}{N} \sum \left| \frac{\exp_{i} - pred_{i}}{pred_{i}} \right| \times 100\%$$
⁽⁷⁾

Table 1 Comparison between Experimental and Predicted (AAD)

S in standard PDMS	D in standard PDMS	P in standard PDMS
0.221%	0.6241%	1.635%
P in v-radiated PDMS	P in PTFE	P in PTFE-X
0.856%	2.980%	0.120%

기체 분리막을 생산하여 공정에 사용하기 위해서는 원하는 투과 특성을 만족하여야 한 다. 이를 위해 기체투과 특성 예측식을 개발하기 위하여 여러 가지 기체 분리막에 기체투 과 특성을 실험 또는 조사하여 획득한 데이터를 획득하였다. 예측식의 계수나 상수들이 투과 기체의 물성이나 열역학적 성질과 연관성이 있다. 이 연관성을 연구하여 기체분리 막에서 기체투과 특성값을 투과 기체의 열역학적 특성값 o와 ɛ*(ɛ/k)를 이용하여 예측 모 델식을 개발하였다. 향후 고분자 분리막의 고유 특성과 투과기체의 특성의 연관성을 연구하여 본 연구에서 이루어진 모델식과의 접목으로 막의 특성과 투과기체의 특성 값으로 (8)식과 같은 일반 예측 모델식(General model equation)을 개발, 기체투과 특성 을 예측하여 기체 분리 공정에서 사용할 수 있을 것이다.

Figure 4 Experimental and predicted Permeability in standard PDMS membrane

Figure 6 Experimental and predicted Permeability in PTFE membrane

Figure 5 Experimental and predicted Permeability

Figure 7 Experimental and predicted Permeability in PTFE-X membrane

<u> 참고문헌</u>

- 1. Robert C. Reid, John M. Prausnitz, Bruc e E. Poling, "The Properties of Gases and Liquids", McGraw-Hill Book Co., 1988
- 2. John M. Prausnitz, Rüdiger N. Lichtenthaler, Edmundo Gomes de Azevedo, "Molecular Thermodynamics of Fluid-Phase Equilibria", Prentice Hall, 1999
- 3. May-Britt Hägg, J. of Membrane Sci., 170, 173-190, 2000
- 4. May-Britt Hägg, J. of Membrane Sci., 177, 109-128, 2000
- 5. May-Britt Hägg, Separation and Purification Technology, 21, 261-278, 2000
- 6. Wen-Hui Lin, Tai-Shung Chung, J. of Membrane Sci., 186, 183-193, 2001

(8)