Steam Reforming of Dimethyl Ether for Production of Hydrogen for Fuel Cells

<u>윤지선</u>, 임선기* 한국과학기술원 (skihm@kaist.ac.kr*)

The steam reforming of dimethyl ether (DME) is scientific and technological interest as a hydrogen source for fuel cells. The reaction proceeded via a successive two step mechanism: hydration of DME to methanol over solid acids, followed by steam reforming of methanol to produce H_2 and CO_2 over copper oxide based catalysts. In this study, the catalysts which is appreciate for the producing much H_2 and less CO was prepared. γ -Alumina, especially Lewis acid sites for DME hydrolysis into methanol, and active metals such as copper for methanol steam reforming to H_2 and CO_2 are mixed. Adding Zn to Cu/Al_2O_3 not only improved H_2 production, but also reduced CO production. The appropriate weight ratio of active metals and solid acids catalysts was optimized. Furthermore, DME conversion was not influenced by H2O/DME ratio in the feed gas, while CO formation was suppressed with a rise in H2O/DME ratio.