A novel photocatalysts Bi₃TiNbO₉ prepared by Co-precipitation method for photodegradation of methylene blue

M. S. Hassan¹, S. R. Dhage¹, 조재웅², 이현철¹, 양오봉^{2,1,*} ¹전북대학교 반도체화학공학과; ²전북대학교 환경화학공학부 (obvang@chonbuk.ac.kr*)

Heterogeneous photocatalysts have been used for the degradation of organic compounds/dyes to carbon dioxide, water and mineral ions and refreshed the environment. Perovskite materials are well known in this field because of their narrower band gap (>3.0 eV) which can be easily excited under visible light or UV light irradiation. In this work, we described the synthesis of single phase, nanoparticles Bi_3TiNbO_9 by simple co-precipitation method under basic condition (pH~ 9). The formation of prepared perovskites materials were confirmed by XRD patterns (JCPDS 7–192). The photocatalytic activity for degrading methylene blue over Bi_3TiNbO_9 under UV-illumination is comparatively well with respect to reported one. The rate of photodegradation of methylene blue was evaluated by using UV-Vis spectrophotometer. Co-precipitation is one of the simplest wet-chemical techniques to synthesize advanced ceramic powders with narrow particle size distribution. The synthesized materials were characterized by XRD, FT-IR, SEM, BET surface area, and UV-Vis spectrophotometer.