Physical and optical properties of nanocrystalline calcium ferrite synthesized by the polymerized complex method

김현규, 유성미, 장점석¹, 지상민¹, 홍석준¹, 정의덕, 이재성^{1,*} 한국기초과학지원연구원 부산센터; ¹포항공과대학교 화공과 (ilee@postech.ac.kr*)

Nanocrystalline $CaFe_2O_4$ oxide semiconductor with spinel structure was synthesized by polymerized complex (PC) method and investigated for its physical and optical properties. The crystallization of $CaFe_2O_4$ made by PC method was found to occur in the temperature range of 700–1100°C. The observation of higly pure phase and such lower crystallization tempearture in $CaFe_2O_4$ made by PC method, is in total contrast to that observed in $CaFe_2O_4$ prepared by the conventional solid–state reaction (SSR) method. The activation energy required for the growth of nanocrystalline $CaFe_2O_4$ in PC sample was found to be 8.4 kJ/mol. The band gap of nanocrystalline $CaFe_2O_4$ determined by UV–DRS was 1.91 eV (647nm). The photocatalytic activity of PC materials for iso–propyl alcohol photodegradation under visible light ($\lambda \ge 420$ nm) was much higher than that of SSR materials.