Development of porous α - LiAlO₂ electrolyte support reinforced by nano-scale Y-Al₂O₃ for molten carbonate fuel cells

<u>함형철</u>, 한종희, 윤성필, 남석우*, 임태훈, 홍성안 한국과학기술연구원 연료전지연구단 (swn@kist.re.kr*)

Recently, as matrix materials for molten carbonate fuel cells(MCFCs), α -LiAlO₂ matrix has been mainly selected because α -LiAlO₂ is more stable than γ -LiAlO₂ at MCFC conditions. The objective of this study is to develop a reinforced α -LiAlO₂ matrix for MCFC by using nanoscale γ -Al₂O₃ (50-60nm), which was chosen for reinforcing α -LiAlO₂ matrix because it was reacted with Li₂CO₃, producing α - LiAlO₂. Another reason for selecting γ -Al₂O₃ is the easy control of viscosity during ball mill process. In a previous literature, the sol coating of LiAlO₂ has been studied for reinforcing electrolyte support. But, this process has suffered from the control of the slurry viscosity, which results in impossible tape casting process. In contrast, there is no viscosity problem because the form of γ -Al₂O₃ used is powders. So, the tape casting can be easily conducted. The physical properties of α -LiAlO₂ electrolyte support reinforced by γ -Al₂O₃ were examined by 3-point bending strength test, scanning electron microscope and X-ray powder diffraction. The electrochemical performance was also examied by electrochemical impedance spectroscopy and an electric load.